首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Connexins mediate intercellular communication by assembling into hexameric channel complexes that act as hemichannels and gap junction channels. Most connexins are characterized by a very rapid turn-over in a variety of cell systems. The regulation of connexin turn-over by phosphorylation and ubiquitination events has been well documented. Moreover, different pathways have been implicated in connexin degradation, including proteasomal and lysosomal-based pathways. Only recently, autophagy emerged as an important connexin-degradation pathway for different connexin isoforms. As such, conditions well known to induce autophagy have an immediate impact on the connexin-expression levels. This is not only limited to experimental conditions but also several pathophysiological conditions associated with autophagy (dys)function affect connexin levels and their presence at the cell surface as gap junctions. Finally, connexins are not only substrates of autophagy but also emerge as regulators of the autophagy process. In particular, several connexin isoforms appear to recruit pre-autophagosomal autophagy-related proteins, including Atg16 and PI3K-complex components, to the plasma membrane, thereby limiting their availability and capacity for regulating autophagy.  相似文献   

2.
Gap junction proteins, connexins, are dynamic polytopic membrane proteins that exhibit unprecedented short half-lives of only a few hours. Consequently, it is well accepted that in addition to channel gating, gap junctional intercellular communication is regulated by connexin biosynthesis, transport and assembly as well as the formation and removal of gap junctions from the cell surface. At least nine members of the 20-member connexin family are known to be phosphorylated en route or during their assembly into gap junctions. For some connexins, notably Cx43, evidence exists that phosphorylation may trigger its internalization and degradation. In recent years it has become apparent that the mechanisms underlying the regulation of connexin turnover are quite complex with the identification of many connexin binding molecules, a multiplicity of protein kinases that phosphorylate connexins and the involvement of both lysosomal and proteasomal pathways in degrading connexins. This paper will review the evidence that connexin phosphorylation regulates, stimulates or triggers gap junction disassembly, internalization and degradation.  相似文献   

3.
Gap junction proteins, connexins, are dynamic polytopic membrane proteins that exhibit unprecedented short half-lives of only a few hours. Consequently, it is well accepted that in addition to channel gating, gap junctional intercellular communication is regulated by connexin biosynthesis, transport and assembly as well as the formation and removal of gap junctions from the cell surface. At least nine members of the 20-member connexin family are known to be phosphorylated en route or during their assembly into gap junctions. For some connexins, notably Cx43, evidence exists that phosphorylation may trigger its internalization and degradation. In recent years it has become apparent that the mechanisms underlying the regulation of connexin turnover are quite complex with the identification of many connexin binding molecules, a multiplicity of protein kinases that phosphorylate connexins and the involvement of both lysosomal and proteasomal pathways in degrading connexins. This paper will review the evidence that connexin phosphorylation regulates, stimulates or triggers gap junction disassembly, internalization and degradation.  相似文献   

4.
Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.  相似文献   

5.
Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to ~1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.  相似文献   

6.
Gap junctions: structure and function (Review)   总被引:16,自引:0,他引:16  
Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to approximately 1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.  相似文献   

7.
Gap junction remodeling and cardiac arrhythmogenesis: cause or coincidence?   总被引:1,自引:0,他引:1  
Gap junctions, clusters of transmembrane channels that link adjoining cells, mediate myocyte-to-myocyte electrical coupling and communication. The component proteins of gap junction channels are termed connexins and, in in vitro expression systems, gap-junctional channels composed of different connexin types exhibit different biophysical properties. In common with other tissues, the heart expresses multiple connexin isoforms. Spatially defined patterns of expression of three connexin isoforms - connexin43, connexin40 and connexin45 - form the cell-to-cell conduction pathways responsible for the orderly spread of current flow that governs the normal cardiac rhythm. Remodeling of gap junction organization and connexin expression is a common feature of human heart disease conditions in which there is an arrhythmic tendency. This remodeling may take the form of disturbances in the distribution of gap junctions and/or quantitative alterations in connexin expression, notably reduced ventricular connexin43 levels. The idea that such changes may contribute to the development of a pro-arrhythmic substrate in the diseased heart has gained ground over the last decade. Recent studies using transgenic mice models have raised new opportunities to explore the significance of gap junction remodeling in the diseased heart.  相似文献   

8.
9.
Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca2+ concentration and release of diverse metabolites (e.g., NAD+ and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.  相似文献   

10.
Intercellular communication via gap junctions plays a critical role in numerous cellular processes, including the control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are aggregates of intercellular channels that enable adjacent cells in solid tissues to directly exchange ions and small molecules. These channels are formed by a family of integral membrane proteins called connexins, of which the best studied is connexin43. Connexins have a high turnover rate in most tissue types, and degradation of connexins is considered to be a tightly regulated process. Post-translational modification of connexins by ubiquitin is emerging as an important event in the regulation of connexin degradation. Ubiquitination is involved in endoplasmic reticulum-associated degradation of connexins as well as in trafficking of connexins to lysosomes. At both the endoplasmic reticulum and the plasma membrane, ubiquitination of connexins is strongly affected by changes in the extracellular environment. There is increasing evidence that the regulation of connexin ubiquitination might be an important mechanism for rapidly modifying the level of functional gap junctions at the plasma membrane, under both normal and pathological conditions. This review discusses the current knowledge about the regulation of intercellular communication via gap junctions by ubiquitination of connexins.  相似文献   

11.
12.
The connexins are a family of proteins that form the intercellular membrane channels of gap junctions. Genes encoding 13 different rodent connexins have been cloned and characterized to date. Connexins vary both in their distribution among adult cell types and in the properties of the channels that they form. In order to explore the functional significance of connexin diversity, several mouse connexin-encoding genes have been disrupted by homologous recombination in embryonic stem cells. Although those experiments have illuminated specific physiological roles for individual connexins, the results have also raised the possibility that connexins may functionally compensate for one another in cells where they are coexpressed. In the present study, we have tested this hypothesis by interbreeding mice carrying null mutations in the genes (Gjb1 and Gja1) encoding connexin32 (beta 1 connexin) and connexin43 (alpha 1 connexin), respectively. We found that fetuses lacking both connexins survive to term but, as expected, the pups die soon thereafter from the cardiac abnormality caused by the absence of connexin43. A survey of the major organ systems of the doubly mutant fetuses, including the thyroid gland, developing teeth, and limbs where these two connexins are coexpressed, failed to reveal any morphological abnormalities not already seen in connexin43 deficient fetuses. Furthermore, the production of thyroxine by doubly mutant thyroids was confirmed by immunocytochemistry. We conclude that, at least as far as the prenatal period is concerned, the normal development of those three organs in fetuses lacking connexin43 cannot simply be explained by the additional presence of connexin32 and vice-versa. Either gap junctional coupling is dispensable in embryonic and fetal cells in which these two connexins are coexpressed, or coupling is provided by yet another connexin when both are absent.  相似文献   

13.
DNAs coding for seven murine connexins (Cx) (Cx26, Cx31, Cx32, Cx37, Cx40, Cx43, and Cx45) are functionally expressed in human HeLa cells that were deficient in gap junctional communication. We compare the permeabilities of gap junctions comprised of different connexins to iontophoretically injected tracer molecules. Our results show that Lucifer yellow can pass through all connexin channels analyzed. On the other hand, propidium iodide and ethidium bromide penetrate very poorly or not at all through Cx31 and Cx32 channels, respectively, but pass through channels of other connexins. 4,6 Diamidino-2-phenylindole (DAPI) dihydrochloride shows less transfer among Cx31 or Cx43 transfectants. Neurobiotin is weakly transferred among Cx31 transfectants. Total junctional conductance in Cx31 or Cx45 transfected cells is only about half as high as in other connexin transfectants analyzed and does not correlate exactly with any of the tracer permeabilities. Permeability through different connexin channels appears to be dependent on the molecular structure of each tracer, i.e. size, charge and possibly rigidity. This supports the hypothesis that different connexin channels show different permeabilities to second messenger molecules as well as metabolites and may fulfill in this way their specific role in growth control and differentiation of cell types. In addition, we have investigated the function of heterotypic gap junctions after co-cultivation of two different connexin transfectants, one of which had been prelabeled with fluorescent dextran beads. Analysis of Lucifer yellow transfer reveals that HeLa cells expressing Cx31 (beta-type connexin) do not communicate with any other connexin transfectant tested but only with themselves. Two other beta-type connexin transfectants, HeLa-Cx26 and -Cx32, do not transmit Lucifer yellow to any of the alpha-type connexins analyzed. Among alpha- type connexins, Cx40 does not communicate with Cx43. Thus, connexins differ in their ability to form functional heterotypic gap junctions among mammalian cells.  相似文献   

14.
Connexins,gap junctional intercellular communication and kinases   总被引:11,自引:0,他引:11  
A number of kinases and signal transduction pathways are known to affect gap junctional intercellular communication and/or phosphorylation of connexins. Most of the information is available for protein kinase A, protein kinase C, mitogen-activated protein kinase, and the tyrosine kinase Src. Much less is known for protein kinase G, Ca(2+)-calmodulin dependent protein kinase, and casein kinase. However, the present lack of knowledge is not necessarily synonymous with lack of importance in the regulation of intercellular communication and phosphorylation of connexins. Kinases and the phosphorylation of connexins may be involved in the regulation of gap junctional intercellular communication at all levels ranging from the expression of connexin genes to the degradation of the gap junction channels. The exact role of the phosphorylation depends both on the kinase and the connexin involved, as well as the cellular context.  相似文献   

15.
Guinea-pig liver gap junctions are constructed from approximately equal amounts of connexins 26 and 32. The assembly of these connexins into connexon hemichannels and gap junctions was studied using antibodies specific to each connexin. Intracellular membranes were shown to contain low amounts of connexin 26 relative to connexin 32 in contrast to the equal connexin ratios detected in lateral plasma membranes and gap junctions. Assembly of gap junctions requires oligomerization of connexins into connexons that may be homomeric or heteromeric. Immunoprecipitation using antibodies to connexins 26 and 32 showed that liver gap junctions were heteromeric. A chemical cross-linking procedure showed that connexons solubilized from guinea-pig liver gap junctions were constructed of hexameric assemblies of connexin subunits. The intracellular site of oligomerization of connexins was investigated by velocity sedimentation in sucrose-detergent gradients. Oligomers of connexins 26 and 32 were extensively present in Golgi membranes and oligomeric intermediates, especially of connexin 26, were detected in the endoplasmic reticulum-Golgi intermediate subcellular fraction. Two intracellular trafficking pathways that may account for the delivery of connexin 26 to the plasma membrane and explain the heteromeric nature of liver gap junctions are discussed.  相似文献   

16.
Preservation of the mechanosensory function of osteocytes by inhibiting their apoptosis might contribute to the beneficial effects of bisphosphonates in bone. We report herein a mechanism by which connexin43 hemichannel opening by bisphosphonates triggers the activation of the kinases Src and ERK.S and promotes cell survival. Bisphosphonate-induced anti-apoptosis requires connexin channel integrity, but not gap junctions. Osteocytic cells express functional hemichannels that are opened by bisphosphonates, as demonstrated by dye uptake, regulation by established agonists and antagonists, and cell surface biotinylation. The anti-apoptotic effect of bisphosphonates depends on connexin43 expression in mouse embryonic fibroblasts and osteoblastic cells. Transfection of connexin43, but not other connexins, into connexin43 naive cells confers de novo responsiveness to the drugs. The signal transducing property of connexin43 requires the pore-forming, as well as the C-terminal domains of the protein, the interaction of connexin43 with Src, and the activation of both Src and ERK kinases. These studies establish a role for connexin43 hemichannels in bisphosphonate action, and a novel function of connexin43—beyond gap junction communication—in the regulation of survival signaling pathways.  相似文献   

17.
Preservation of the mechanosensory function of osteocytes by inhibiting their apoptosis might contribute to the beneficial effects of bisphosphonates in bone. We report herein a mechanism by which connexin43 hemichannel opening by bisphosphonates triggers the activation of the kinases Src and ERKs and promotes cell survival. Bisphosphonate-induced anti-apoptosis requires connexin channel integrity, but not gap junctions. Osteocytic cells express functional hemichannels that are opened by bisphosphonates, as demonstrated by dye uptake, regulation by established agonists and antagonists, and cell surface biotinylation. The anti-apoptotic effect of bisphosphonates depends on connexin43 expression in mouse embryonic fibroblasts and osteoblastic cells. Transfection of connexin43, but not other connexins, into connexin43 na?ve cells confers de novo responsiveness to the drugs. The signal transducing property of connexin43 requires the pore-forming, as well as the C-terminal domains of the protein, the interaction of connexin43 with Src. and the activation of both Src and ERK kinases. These studies establish a role for connexin43 hemichannels in bisphosphonate action, and a novel function of connexin43--beyond gap junction communication--in the regulation of survival signaling pathways.  相似文献   

18.
19.
Connexins, the proteins that form gap junction channels, are polytopic plasma membrane (PM) proteins that traverse the plasma membrane bilayer four times. The insertion of five different connexins into the membrane of the ER was studied by synthesizing connexins in translation- competent cell lysates supplemented with pancreatic ER-derived microsomes, and by expressing connexins in vivo in several eucaryotic cell types. In addition, the subcellular distribution of the connexins was determined. In vitro-synthesis in the presence of microsomes resulted in the signal recognition particle-dependent membrane insertion of the connexins. The membrane insertion of all connexins was accompanied by an efficient proteolytic processing that was dependent on the microsome concentration. Endogenous unprocessed connexins were detectable in the microsomes used, indicating that the pancreatic microsomes serve as a competent recipient in vivo for unprocessed full length connexins. Although oriented with their amino terminus in the cytoplasm, the analysis of the cleavage reaction indicated that an unprecedented processing by signal peptidase resulted in the removal of an amino-terminal portion of the connexins. Variable amounts of similar connexin cleavage products were also identified in the ER membranes of connexin overexpressing cells. The amount generated correlated with the level of protein expression. These results demonstrate that the connexins contain a cryptic signal peptidase cleavage site that can be processed by this enzyme in vitro and in vivo in association with their membrane insertion. Consequently, a specific factor or condition must be required to prevent this aberrant processing of connexins under normal conditions in the cell.  相似文献   

20.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with "permissive" connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号