首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Warm red-emitting praseodymium-doped LiSrVO4 phosphors were synthesized via solid-state reaction. The phase formation was verified using an X-ray diffraction study and the morphology was investigated using a scanning electron microscope study. The LiSrVO4:Pr3+ phosphors emitted red light when exposed to ultraviolet light, indicating their possibility for use in warm white light-emitting diodes (WLEDs). Furthermore, the effect of charge compensators on the luminescence characteristics was addressed. The decay time was investigated using time-resolved photoluminescence. Furthermore, thermal quenching was analyzed through temperature-dependent photoluminescence spectra. Their sensitivity was calculated using temperature-dependent decay time analysis. The colour purity of the emitted light could be measured by photometric analysis. This comprehensive investigation provides a thorough understanding of the luminescence properties of phosphors for WLED applications.  相似文献   

2.
A series of zinc complexes with salicylidene-aniline and its derivatives as ligands have been designed and synthesized for electron transport in organic light-emitting diodes (OLEDs). A systematic study on their thermal, photophysical, electrochemical and electron transport properties has been carried out and demonstrated that the substitution of −CH3, −OCH3, −CN and −N(CH3)2 on aniline ring of ligands can finely tune the properties of the corresponding zinc complexes. The density functional theory calculations of location and distribution of the frontier molecular orbital states unveiled the relationships between the substituents and the photophysical and electrochemical properties of these complexes. OLEDs with bis(salicylidene-p-methylaniline)zinc(II) (Zn(sama)2) as the electron transport layer exhibited high current efficiency, indicating its great potential as a useful electron transport material for OLEDs.  相似文献   

3.
A series of controllable emissions SrWO4:Eu3+ and charge‐compensated SrWO4: (m = 0.01 or 0.20) phosphors was successfully prepared via a simple co‐precipitation method. The energy transfer mechanism was studied based on the Huang's theory. A low magnitude of Huang‐Rhys factor (10?2) was calculated using phonon sideband spectra. The Judd–Ofelt parameters Ωλ (λ = 2, 4 and 6) of Eu3+‐activated SrWO4 doped with charge compensation were obtained. The calculated Commission Internationale de l'Eclairage chromaticity coordinates were found to be about (0.67, 0.33) for SrWO4: and charge‐compensated SrWO4: phosphors, which coincided with the National Television Standard Committee system standard values for red. A white light emission was obtained under 362 nm excitation. The correlated color temperature was computed by a simple equation to characterize light sources. Thus, warm white light‐emitting diodes with higher Ra can be constructed by combining as‐prepared high efficiency, low correlated color temperature and high color purity phosphor.  相似文献   

4.
Pure and Na+‐doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X‐ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X‐ray diffractogram exhibits well‐resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium‐doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3, Na+ enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242–457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na+ is doped into Alq3. Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light‐emitting phosphors for organic light‐emitting diodes, flat panel displays, solid‐state lighting technology – a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The present research work entails the synthesis of one binary and four ternary red light−emitting Eu (III)-based complexes with 3-benzylidene-2,4-pentanedione as the main ligand and 1,10-phenanthroline, bathophenanthroline, neocuproine, and 4,4′-′dimethyl-2,2′-′bipyridyl as auxiliary ligands. The metal–organic framework of the series was elucidated using energy dispersive X-ray analysis, elemental analysis, Fourier transform infrared spectroscopy, and proton nuclear magnetic resonance. This Eu (III) series exhibits optimum thermal stability, making them a promising candidate for organic light-emitting diodes. On the basis of emission spectra, their optical parameters such as nonradiative and radiative decay rates, luminescence decay time, intrinsic quantum efficiency, and Judd–Ofelt intensity parameter were determined. The monocentric luminescence and Judd–Ofelt parameters reveal the absence of symmetry around the europium center. CIE chromaticity coordinates, correlated color temperature values, color purity, and asymmetric ratios authenticate the color coordinates of the complexes in red region. Optical band gap values lie within the range of wide band gap semiconductors, indicating their utilization in military radars and biological labeling.  相似文献   

6.
A series of Ce3+‐activated blue‐emitting phosphors BaY2Si3O10 (BYSO) was designed and synthesized by a conventional solid‐state method. Upon ultraviolet light (250–370 nm) excitation, the obtained phosphors showed an intense blue emission band centered at 400–427 nm depending on doping concentration, and corresponding to the 5d→4f transition of Ce3+. The effects of doping concentration on crystal structure, emitting color, photoluminescence and photoluminescence excitation spectra, as well as the concentration quenching mechanism were studied in detail. The optimal doping concentration of Ce3+ in this phosphor was demonstrated to be about 0.75% and the concentration quenching mechanism can be ascribed to electric dipole–dipole interactions with a critical distance of ~38 Å. These fine luminescence properties indicate that BYSO:Ce3+ may be a potential blue phosphor for full‐color ultra‐violet (UV) white light emitting diodes (WLEDs).  相似文献   

7.
Zn‐doped CaTiO3:Eu3+ red phosphors for enhanced photoluminescence in white light‐emitting diodes (LEDs) were synthesized by a solid‐state method. The structure and morphology of the obtained phosphor samples were observed by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), and the impact of Ca, Zn and Eu content on their photoluminescence properties was studied. The results indicated that Zn not only participates in the formation of defects in suitable lattice matrices but also has a role in flux in the transformation from ZnO to Zn2TiO4, which is beneficial for the enhancement of photoluminescence properties. Photoluminescence test data showed that the Zn‐doped phosphor is excited efficiently by near‐ultraviolet (NUV) light at wavelengths around 398 nm and emits an intense red light with a broad peak around 616 nm corresponding to the 5D07F2 transition of Eu3+. The intensity of this phosphor emission is three times stronger than that without Zn‐doping. Furthermore, this phosphor has very good thermal stability, high color purity and a low sintered temperature, all of which suggest its potential as a promising red phosphor for white LEDs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
High quality white light‐emitting diodes (LEDs) employ multi‐component phosphor mixtures to generate light of a high color rendering index (CRI). The number of distinct components in a typical phosphor mix usually ranges from two to four. Here we describe a systematic experimental technique for starting with phosphors of known chromatic properties and arriving at their respective proportions for creating a blended phosphor to produce light of the desired chromaticity. This method is applicable to both LED pumped and laser diode (LD) pumped white light sources. In this approach, the radiometric power in the down‐converted luminescence of each phosphor is determined and that information is used to estimate the CIE chromaticity coordinate of light generated from the mixed phosphor. A suitable method for mixing multi‐component phosphors is also described. This paper also examines the effect of light scattering particles in phosphors and their use for altering the spectral characteristics of LD‐ and LED‐generated light. This is the only approach available for making high efficiency phosphor‐converted single‐color LEDs that emit light of wide spectral width.  相似文献   

9.
Window integrated photovoltaics for automotive and building applications are a promising market segment for organic solar modules. Besides semi‐transparency, window integrated applications require a reasonable transparency perception and good color rendering properties in order to be suitable for realistic scene illumination. Here, the transmitted light through semi‐transparent organic solar cells comprising the polymer/fullerene blend poly[(4,4'‐bis(2‐ethylhexyl)dithieno[3,2‐b:2',3'‐d]silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl]: [6,6]‐phenyl C71‐butric acid methyl ester (PSBTBT:PC70BM) as active layer and a sputtered aluminum doped zinc oxide cathode were found to exhibit a color neutral perception for the human eye and very good color rendering properties. Moreover, the electrical cell properties allow for efficient energy harvesting with an overall power conversion efficiency η ≈ 3%.  相似文献   

10.
A series of Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors was synthesized via a co‐precipitation method, then their crystal structure, quantum efficiency and luminescent properties were analyzed by XRD and FL, respectively. The results showed that these phosphors not only presented the excitation characteristics of Ba2P2O7:xEu2+,zTb3+, but also exhibited that of the Ba2P2O7:yCe3+,zTb3+ phosphor. Meanwhile, the tri‐doped phosphor showed a stronger absorption around 320 nm in contrast with the Eu2+/Ce3+:Tb3+ co‐doped phosphor. Not only can energy transfer from Ce3+→Eu2+ be observed; the energy transfer mechanism from Eu2+ to Tb3+ is discussed in the tri‐doped system. Ce3+ affects the luminescence properties of Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors just as the sensitizer whereas Eu2+ is considered both as the sensitizer and the activator. The chromaticity coordinates of tri‐doped phosphors excited at 320 nm stayed steadily in the bluish‐white light region,and the emitted color and color temperature (CCT) of these phosphors could be tuned by adjusting the relative contents of Eu2+, Ce3+ and Tb3+. Hence, the single phase Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors may be considered as potential candidates for white light‐emitting diodes.  相似文献   

11.
Peng Du  Jae Su Yu 《Luminescence》2017,32(8):1504-1510
A series of Sm3+‐activated Sr3La(VO4)3 phosphors were synthesized by a facile sol‐gel method. X‐ray diffraction patterns and photoluminescence (PL)/cathodoluminescence (CL) spectra as well as PL decay curves were employed to characterize the obtained samples. Upon 402 nm light excitation, the characteristic emissions of Sm3+ ions corresponding to 4G5/26HJ transitions were observed in all the as‐prepared products. The PL emission intensity was increased with increase in Sm3+ ion concentration, while concentration quenching occurred when the doping concentration was over 4 mol%. The non‐radiative energy transfer mechanism for concentration quenching of Sm3+ ions was dominated by dipole–dipole interaction and the critical distance was around 21.59 Å. Furthermore, temperature‐dependent PL emission spectra revealed that the obtained phosphors possessed good thermal stability with an activation energy of 0.19 eV. In addition, the CL spectra of the samples were almost the same as the PL spectra, and the CL emission intensity showed a tendency to increase with increase in accelerating voltage and filament current. These results suggest that the Sm3+‐activated Sr3La(VO4)3 phosphors with good color coordinates, high color purity and superior thermal stability may be a potential candidate for applications in white light‐emitting diodes and field‐emission displays as red‐emitting phosphors.  相似文献   

12.
A series of Ca2Mg0.25Al1.5Si1.25O7:Ce3+/Eu2+/Tb3+ phosphors was been prepared via a conventional high temperature solid‐state reaction and their luminescence properties were studied. The emission spectra of Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+ and Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Tb3+ phosphors show not only a band due to Ce3+ ions (409 nm) but also as a band due to Eu2+ (520 nm) and Tb3+ (542 nm) ions. More importantly, the effective energy transfer from Ce3+ to Eu2+ and Tb3+ ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole–dipole (Ce3+ to Eu2+) and dipole–quadrupole (Ce3+ to Tb3+) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce3+ and Eu2+ ions as well as Ce3+ and Tb3+ ions. The above results indicate that Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+/Tb3+ are promising single‐phase blue‐to‐green phosphors for application in phosphor conversion white‐light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A series of color‐tunable Ca3–2x‐y‐zSiO4Cl2 (CSC):xCe3+,xLi+,yMn2+,zEu2+ phosphors with low temperature phase structure was synthesized via the sol–gel method. An energy transfer process from Ce3+ to Mn2+ in CSC:0.01Ce3+,0.01Li+,yMn2+ (y = 0.03–0.09) and the mechanism was verified to be an electric dipole–dipole interaction. The Ce3+ and Mn2+ emission intensities were greatly enhanced by co‐doping Eu2+ ions into CSC:0.01Ce3+,0.01Li+,0.07Mn2+ phosphors due to competitive energy transfers from Eu2+/Ce3+ to Mn2+, and Ce3+ to Eu2+. Under 332 nm excitation, CSC:0.01Ce3+,0.01Li+,0.07Mn2+,zEu2+ (z = 0.0005–0.002) exhibited tunable emission colors from green to white with coexisting orange, green and violet‐blue emissions. These phosphors could have potential application in white light‐emitting diodes.  相似文献   

14.
Significant enhancement of radiative efficiency of thin-film silicon light-emitting diodes achieved by placing the active layer in close proximity to silver (Ag) nanoparticles has been observed. In this paper, optical properties including transmission, reflection, and absorption of a random assembly of Ag nanoparticles are theoretically investigated using the effective medium model. Furthermore, the influence of Ag nanoparticles on light emission of silicon light-emitting diodes is studied by an improved effective mode volume model we propose here. The normalized line shape of dipole oscillation is calculated directly using Lorentz–Drude model without using any approximation. Thus, it results in more accurate calculation of the enhanced Purcell factor in comparison with the conventional approach. We show that an enhancement of radiative efficiency of silicon light-emitting diodes can be achieved by localized surface plasmons on metal nanoparticles. The calculated result of optimal Ag nanoparticle size to enhance light emission of silicon light-emitting diodes at 900 nm wavelength is in very good agreement with those obtained from the experimental result. The model is useful for the design of metallic nanoparticles enhanced light emitters.  相似文献   

15.
Pyrochlore phosphors have shown their worth in modern day lighting in the last few years. Colour tunability of the phosphor is one of the modern techniques used to obtain white light-emitting diodes (WLEDs). In the proposed work, Y2Zr2O7:Sm3+,Eu3+ phosphors were investigated for WLED applications as well as display devices. A convectional solid-state diffusion method was used to synthesize the proposed phosphors. X-ray diffraction of the proposed phosphors was performed and compared with the standard Inorganic Crystal Structure Database. The crystal structure of the sample was cubic in nature, obtained from Rietveld refinement. Vibrational and morphological studies on the samples were carried out using Fourier transform infrared spectroscopy and scanning electron microscopy analysis. The photoluminescence study of the colour tunable phosphor showed the characteristic peak of Sm3+ together with the two sharp peaks of Eu3+ ions. Greenish yellow to red colour tunability was observed in the proposed phosphor with enhancement of Eu3+ ions. All these results showed the worth of this sample for WLEDs applications as well as in display devices.  相似文献   

16.
K2TiF6:Mn4+ red phosphors with different Mn4+ doping concentrations were obtained using the co‐precipitation method. X‐Ray diffraction, scanning electron microscopy, Raman spectra, Fourier transform infrared spectroscopy, photoluminescence excitation and emission spectra and decay curves were used to characterize the properties of K2TiF6:Mn4+ phosphors. Under excitation at 470 nm, an intense red emission peak around 631 nm corresponding to the 2Eg4A2 transition of Mn4+ was observed for 2.48 mol% K2TiF6:Mn4+ phosphors and was used as the optimum doping concentration. The excellent luminescent properties of K2TiF6:Mn4+ suggest that this material might be a promising red phosphor for generating warm white light in phosphor‐converted white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Proper illumination is essential for light microscopy. Whereas in early years incandescent light was the only illumination, today, more and more specialized light sources, such as lasers or arc lamps are used. Because of the high efficiency and brightness that light-emitting diodes (LED) have reached today, they have become a serious alternative for almost all kinds of illumination in light microscopy. LED have a high durability, do not need expensive electronics, and they can be switched in nanoseconds. Besides this, they are available throughout the UV/Vis/NIR-spectrum with a narrow bandwidth. This makes them ideal light sources for fluorescence microscopy. The white LED, with a color temperature ranging from 2,600 up to 5,000 K is an excellent choice for bright-field illumination with the additional advantage of simple brightness adjustments without changing the spectrum. This review discusses the different LED types, their use in the fluorescence microscope, and discusses LED as specialized illumination sources for F?rster resonance energy transfer and fluorescent lifetime imaging microscopy.  相似文献   

18.
A novel multi-color emitting Na2YMg2V3O12:Sm3+ phosphor was synthesized using a solid-state reaction, and its crystal structure, luminescence properties, and thermal stability were studied. Charge transfer within the (VO4)3− groups in the Na2YMg2V3O12 host led to a broad emission band between 400 and 700 nm, with a maximum at 530 nm. The Na2Y1−xMg2V3O12:xSm3+ phosphors exhibited a multi-color emission band under 365 nm near-ultraviolet (near-UV) light, consisting of the green emission of the (VO4)3− groups and sharp emission peaks at 570 nm (yellow), 618 nm (orange), 657 nm (red), and 714 nm (deep red) of Sm3+ ions. The optimal doping concentration of Sm3+ ions was found to be 0.05 mol%, and the dipole–dipole (d–d) interaction was primarily responsible for the concentration quenching phenomenon. Using the acquired Na2YMg2V3O12:Sm3+ phosphors, commercial BaMgAl10O17:Eu2+ blue phosphor, and a near-UV light-emitting diode (LED) chip, a white-LED lamp was designed and packaged. It produced bright neutral white light, manifesting a CIE coordinate of (0.314, 0.373), a color rendering index (CRI) of 84.9, and a correlated color temperature (CCT) of 6377 K. These findings indicate the potential of Na2YMg2V3O12:Sm3+ phosphor to be used as a multi-color component for solid-state illumination.  相似文献   

19.
The luminescence of novel rare earth ( Tb 3 + , Eu 3 + and Dy 3 + )‐activated Ba 2 Sr 2 Al 2 O 7 phosphors for solid‐state lighting is presented. The aluminate phosphors were synthesized using a one‐step combustion method. X‐Ray diffraction, scanning electron microscopy and photoluminescence characterizations were performed to understand the mechanism of excitation and the corresponding emission in the as‐prepared phosphor, as characterized the phase purity and microstructure. Improvements in the luminescence properties of the phosphors with rare earth concentration were observed. The phosphor hue could be tuned from blue, green and red by proper selection of rare earth ions in typical concentrations. Effective absorption in the near‐ultraviolet region was observed, which makes the phosphor a potential candidate for ultraviolet light‐emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Phosphors with composition Ca2ZnMoO6 were synthesized at temperatures of 800–1200°C using the solid‐state method. Analysis of X‐ray diffraction patterns of the Ca2ZnMoO6 powders did not reveal a double perovskite structure. When the synthesis temperature was equal to or higher than 800°C, the synthesized Ca2ZnMoO6 powders revealed a tetragonal structure (CaMoO4) rather than an orthorhombic structure (Ca2ZnMoO6) and the cubic structure (Sr2ZnMoO6) of a double perovskite. The ZnO phase was still observed at a synthesis temperature of 1200°C. The compositions of synthesized Ca2ZnMoO6 powders differed from the prepared powder, and the Ca2ZnMoO6 phosphors exhibited some important novel features. First, synthesized Ca2ZnMoO6 compositions could emit light as a phosphor no activators, called Ca2ZnMoO6 phosphors. Effect of synthesis temperature on luminescence properties of these Ca2ZnMoO6 phosphors was readily observed, and some important novel features and properties were noted. Second, the phosphors presented only one broad characteristic emission peak in the visible light region. Third, measurement of the chromaticity diagram of the Ca2ZnMoO6 phosphors revealed a white‐light source. Through analysis, we determined why the synthesized Ca2ZnMoO6 phosphors had just one broad characteristic emission peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号