首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The JIP1 scaffold protein regulates axonal development in cortical neurons   总被引:1,自引:0,他引:1  
The development of neuronal polarity is essential for the determination of neuron connectivity and for correct brain function. The c-Jun N-terminal kinase (JNK)-interacting protein-1 (JIP1) is highly expressed in neurons and has previously been characterized as a regulator of JNK signaling.JIP1 has been shown to localize to neurites in various neuronal models, but the functional significance of this localization is not fully understood [1-4]. JIP1 is also a cargo of the motor protein kinesin-1, which is important for axonal transport [2, 4]. Here we demonstrate that before primary cortical neurons become polarized, JIP1 specifically localizes to a single neurite and that after axonal specification,it accumulates in the emerging axon. JIP1 is necessary for normal axonal development and promotes axonal growth dependent upon its binding to kinesin-1 and via a newly described interaction with the c-Abl tyrosine kinase. JIP1associates with and is phosphorylated by c-Abl, and the mutation of the c-Abl phosphorylation site on JIP1 abrogates its ability to promote axonal growth. JIP1 is therefore an important regulator of axonal development and is a key target of c-Abl-dependent pathways that control axonal growth.  相似文献   

3.
The mammalian cerebral cortex consists of six layers that are generated via coordinated neuronal migration during the embryonic period. Recent studies identified specific phases of radial migration of cortical neurons. After the final division, neurons transform from a multipolar to a bipolar shape within the subventricular zone-intermediate zone (SVZ-IZ) and then migrate along radial glial fibres. Mice lacking Cdk5 exhibit abnormal corticogenesis owing to neuronal migration defects. When we introduced GFP into migrating neurons at E14.5 by in utero electroporation, we observed migrating neurons in wild-type but not in Cdk5(-/-) embryos after 3-4 days. Introduction of the dominant-negative form of Cdk5 into the wild-type migrating neurons confirmed specific impairment of the multipolar-to-bipolar transition within the SVZ-IZ in a cell-autonomous manner. Cortex-specific Cdk5 conditional knockout mice showed inverted layering of the cerebral cortex and the layer V and callosal neurons, but not layer VI neurons, had severely impaired dendritic morphology. The amount of the dendritic protein Map2 was decreased in the cerebral cortex of Cdk5-deficient mice, and the axonal trajectory of cortical neurons within the cortex was also abnormal. These results indicate that Cdk5 is required for proper multipolar-to-bipolar transition, and a deficiency of Cdk5 results in abnormal morphology of pyramidal neurons. In addition, proper radial neuronal migration generates an inside-out pattern of cerebral cortex formation and normal axonal trajectories of cortical pyramidal neurons.  相似文献   

4.
HGF regulates the development of cortical pyramidal dendrites   总被引:8,自引:0,他引:8  
Although hepatocyte growth factor (HGF) and its receptor tyrosine kinase MET are widely expressed in the developing and mature central nervous system, little is known about the role of MET signaling in the brain. We have used particle-mediated gene transfer in cortical organotypic slice cultures established from early postnatal mice to study the effects of HGF on the development of dendritic arbors of pyramidal neurons. Compared with untreated control cultures, exogenous HGF promoted a highly significant increase in dendritic growth and branching of layer 2 pyramidal neurons, whereas inactivation of endogenous HGF with function-blocking, anti-HGF antibody caused a marked reduction in size and complexity of the dendritic arbors of these neurons. Furthermore, pyramidal neurons transfected with an MET dominant-negative mutant receptor likewise had much smaller and less complex dendritic arbors than did control transfected neurons. Our results indicate that HGF plays a role in regulating dendritic morphology in the developing cerebral cortex.  相似文献   

5.
Heterozygosity for missense mutations in Seipin, namely N88S and S90L, leads to a broad spectrum of motor neuropathy, while a number of loss‐of‐function mutations in Seipin are associated with the Berardinelli–Seip congenital generalized lipodystrophy type 2 (CGL2, BSCL2), a condition that is characterized by severe lipoatrophy, insulin resistance, and intellectual impairment. The mechanisms by which Seipin mutations lead to motor neuropathy, lipodystrophy, and insulin resistance, and the role Seipin plays in central nervous system (CNS) remain unknown. The goal of this study is to understand the functions of Seipin in the CNS using a loss‐of‐function approach, i.e. by knockdown (KD) of Seipin gene expression. Excitatory post‐synaptic currents (EPSCs) were impaired in Seipin‐KD neurons, while the inhibitory post‐synaptic currents (IPSCs) remained unaffected. Expression of a shRNA‐resistant human Seipin rescued the impairment of EPSC produced by Seipin KD. Furthermore, α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA)‐induced whole‐cell currents were significantly reduced in Seipin KD neurons, which could be rescued by expression of a shRNA‐resistant human Seipin. Fluorescent imaging and biochemical studies revealed reduced level of surface AMPA receptors, while no obvious ultrastructural changes in the pre‐synapse were found. These data suggest that Seipin regulates excitatory synaptic function through a post‐synaptic mechanism.  相似文献   

6.
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions.  相似文献   

7.
Newborn neurons migrate from their birthplace to their final location to form a properly functioning nervous system. During these movements, young neurons must attach and subsequently detach from their substrate to facilitate migration, but little is known about the mechanisms cells use to release their attachments. We show that the machinery for clathrin-mediated endocytosis is positioned to regulate the distribution of adhesion proteins in a subcellular region just proximal to the neuronal cell body. Inhibiting clathrin or dynamin function impedes the movement of migrating neurons both in vitro and in vivo. Inhibiting dynamin function in vitro shifts the distribution of adhesion proteins to the rear of the cell. These results suggest that endocytosis may play a critical role in regulating substrate detachment to enable cell body translocation in migrating neurons.  相似文献   

8.
Increasing evidence indicates that development of embryonic central nervous system precursors is tightly regulated by extrinsic cues located in the local environment. Here, we asked whether neurotrophin-mediated signaling through Trk tyrosine kinase receptors is important for embryonic cortical precursor cell development. These studies demonstrate that inhibition of TrkB (Ntrk2) and/or TrkC (Ntrk3) signaling using dominant-negative Trk receptors, or genetic knockdown of TrkB using shRNA, caused a decrease in embryonic precursor cell proliferation both in culture and in vivo. Inhibition of TrkB/C also caused a delay in the generation of neurons, but not astrocytes, and ultimately perturbed the postnatal localization of cortical neurons in vivo. Conversely, overexpression of BDNF in cortical precursors in vivo promoted proliferation and enhanced neurogenesis. Together, these results indicate that neurotrophin-mediated Trk signaling plays an essential, cell-autonomous role in regulating the proliferation and differentiation of embryonic cortical precursors and thus controls cortical development at earlier stages than previously thought.  相似文献   

9.
10.
Transient cerebral ischemia, which is accompanied by a sustained release of glutamate and zinc, as well as H(2)O(2) formation during the reperfusion period, strongly depresses protein synthesis. We have previously demonstrated that the glutamate-induced increase in cytosolic Ca(2+) is likely responsible for blockade of the elongation step of protein synthesis, whereas Zn(2+) preferentially inhibits the initiation step. In this study, we provide evidence indicating that H(2)O(2) and thapsigargin mobilized a common intracellular Ca(2+) pool. H(2)O(2) treatment stimulated a slow increase in intracellular Ca(2+), and precluded the effect of thapsigargin on Ca(2+) mobilization. H(2)O(2) stimulated the phosphorylation of both eIF-2alpha and eEF-2, in a time- and dose-dependent manner, suggesting that both the blockade of the elongation and of the initiation step are responsible for the H(2)O(2)-induced inhibition of protein synthesis. However, kinetic data indicated that, at least during the first 15 min of H(2)O(2) treatment, the inhibition of protein synthesis resulted mainly from the phosphorylation of eEF-2. In conclusion, H(2)O(2) inhibits protein translation in cortical neurons by a process that involves the phosphorylation of both eIF-2alpha and eEF-2 and the relative contribution of these two events depends on the duration of H(2)O(2) treatment.  相似文献   

11.
J. Neurochem. (2012) 122, 1010-1022. ABSTRACT: Amyloid precursor protein (APP) is involved in the pathogenesis of Alzheimer's disease. It is axonally transported, endocytosed and sorted to different cellular compartments where amyloid beta (Aβ) is produced. However, the mechanism of APP trafficking remains unclear. We present evidence that huntingtin associated protein 1 (HAP1) may reduce Aβ production by regulating APP trafficking to the non-amyloidogenic pathway. HAP1 and APP are highly colocalized in a number of brain regions, with similar distribution patterns in both mouse and human brains. They are associated with each other, the interacting site is the 371-599 of HAP1. APP is more retained in cis-Golgi, trans-Golgi complex, early endosome and ER-Golgi intermediate compartment in HAP1-/- neurons. HAP1 deletion significantly alters APP endocytosis and reduces the re-insertion of APP into the cytoplasmic membrane. Amyloid precursor protein-YFP(APP-YFP) vesicles in HAP1-/- neurons reveal a decreased trafficking rate and an increased number of motionless vesicles. Knock-down of HAP1 protein in cultured cortical neurons of Alzheimer's disease mouse model increases Aβ levels. Our data suggest that HAP1 regulates APP subcellular trafficking to the non-amyloidogenic pathway and may negatively regulate Aβ production in neurons.  相似文献   

12.
Wang  Yuting  Fu  Xueqing  Xie  Lihui  Qin  Wei  Li  Ling  Sun  Xiaofen  Xing  Shihai  Tang  Kexuan 《Plant Cell, Tissue and Organ Culture》2019,137(2):249-264

Undifferentiated plant cells in culture represent a renewable system conducive to understanding biological processes and a valuable alternative for secondary metabolite production. Additionally, manipulation of these systems by plant growth regulators (PGRs) may result in redifferentiation/organogenesis and hence changes in metabolic profiles. The aim of the study was to investigate the effects of combining auxin (2,4-dichlorophenoxyacetic acid) and cytokinin (kinetin) at concentrations of 2, 4, 6 and 9 µM on undifferentiated Moringa oleifera callus cells, at a metabolome level. Results indicated that the callus became habituated, i.e. developed the ability to grow without added stimulatory PGRs, and no organogenesis was observed on any of the different PGR combinations under investigation. Methanolic extracts were screened for total phenolic content (TPC) and anti-oxidant activity, and further analysed using liquid chromatography coupled to mass spectrometry combined with multivariate data analysis to facilitate analysis of the metabolite profiles. While the anti-oxidant capacity of extracts from the various treatments exhibited little variation, the TPC differed significantly. Despite the observed habituation phenomenon, the calli retained responsiveness towards external PGRs and each of the 25 conditions generated a unique metabolome as found by principal component analysis. This was also reflected by a number of phytochemicals that were annotated as biomarkers from PGR-treated calli. These findings demonstrate the differential influence of 2,4-D and kinetin on M. oleifera callus for the production of secondary metabolites.

  相似文献   

13.
WDR54 is a member of the WD40 repeat (WDR) domain-containing protein family that was recently identified as a novel oncogene in colorectal cancer. However, the molecular mechanism of WDR54 and its functional association with other molecules related to tumor cell growth are unknown. Here, we show that WDR54 can be cross-linked by the action of transglutaminase (TG) 2, which enhances the activation of EGF receptor-mediated signaling pathway. The most carboxyl-terminal WD domain was required for cross-linking. In addition, lysine 280 in WDR54, also in this WD domain, was an important residue for both cross-linking and ubiquitination. Cross-linked WDR54 was found in vesicles aggregated at the plasma membrane. The activated EGF receptor was co-localized with this vesicle, and the internalization of the EGF receptor into the cytosol was sustained. As a result, Erk activity in response to EGF stimulation was enhanced. Furthermore, the growth of the cells lacking WDR54 expression generated by genome editing was delayed compared with that in wild-type cells. Because TG2 is also has been proposed to activate the EGF receptor-signaling and proliferation of tumor cells, WDR54 might have a functional relationship with the EGF receptor and TG2.Our study on the mechanism of biological function of WDR54 may provide rationale for the design and development of a cancer drug based on inhibiting the post-translational modification of this oncogene product.  相似文献   

14.
Interactions between all-trans-retinoic acid (RA) and bone morphogenetic proteins (BMPs) affect the expression of neurotrophin receptors in sympathetic neurons (Kobayashi et al., 1998). In this study, we examined the possibility that similar interactions might regulate the morphological development of these neurons. Under control conditions, embryonic rat sympathetic neurons formed axons but not dendrites; cells exposed to RA had a similar appearance. Profuse dendritic growth was observed upon exposure to BMP-7, and this was reduced by approximately 70% by RA. This inhibitory effect of RA was mediated primarily by retinoic acid receptors (RARs) and it exhibited substantial specificity because it was not associated with changes in either axonal elongation or cell survival. Moreover, mRNAs for enzymes required for synthesis of RA were expressed in the sympathetic neurons and retinoid activity was released from superior cervical ganglia. These observations suggest that retinoids may function as endogenous morphogens and regulate neural cell shape and polarity in developing sympathetic ganglia.  相似文献   

15.
16.
17.
18.
Epithelial-mesenchymal transition (EMT), crucial during embryogenesis for new tissue and organ formation, is also considered to be a prerequisite to cancer metastasis. We report here that the protein tyrosine phosphatase Pez is expressed transiently in discrete locations in developing brain, heart, pharyngeal arches, and somites in zebrafish embryos. We also find that Pez knock-down results in defects in these organs, indicating a crucial role in organogenesis. Overexpression of Pez in epithelial MDCK cells causes EMT, with a drastic change in cell morphology and function that is accompanied by changes in gene expression typical of EMT. Transfection of Pez induced TGFbeta signaling, critical in developmental EMT with a likely role also in oncogenic EMT. In zebrafish, TGFbeta3 is co- expressed with Pez in a number of tissues and its expression was lost from these tissues when Pez expression was knocked down. Together, our data suggest Pez plays a crucial role in organogenesis by inducing TGFbeta and EMT.  相似文献   

19.
Although Rho GTPases regulate multiple cellular events, their role in cell division is still obscure. Here we show that expression of a GTPase-activating protein (GAP)-deficient mutant (R386A) of the Rho regulator MgcRacGAP induces abnormal cortical activity during cytokinesis in U2OS cells. Multiple large blebs were observed in cells expressing MgcRacGAP R386A from the onset of anaphase to the late stage of cell division. When mitotic blebbing was excessive, cytokinesis was inhibited, and cells with micronuclei were generated. It has been reported that blebbing is caused by abnormal cortical activity. The MgcRacGAP R386A-induced abnormal cortical activity was inhibited by the dominant negative form of RhoA, but not Rac1 or Cdc42. Moreover, expression of constitutively active RhoA also induced drastic cortical activity during cytokinesis. Unlike apoptotic blebbing, MgcRacGAP R386A-induced blebbing was not inhibited by the ROCK inhibitor Y-27632, suggesting that MgcRacGAP regulates cortical activity during cytokinesis through a novel signaling pathway. We propose that MgcRacGAP plays a pivotal role in cytokinesis by regulating cortical movement through RhoA.  相似文献   

20.
Fascin-1 is an actin-bundling protein localized at the core actin bundles within microvillar projections and filopodial extensions in migrating cells. It is expressed at a low level in normal epithelial cells, but at a high level in tumor cells, indicating its importance in the invasion and motility of tumor cells. In addition, fascin-1 is expressed in human and murine embryos, occurring at high levels especially in developing nervous tissues. In this study, we have investigated the expression patterns of fascin-1 immunohistochemically during the early stages of rat hepatogenesis. A high expression of fascin-1 was detected in the liver bud and hepatoblasts at embryonic day (ED) 10.5, ED11.5, and ED12.5. Expression fell by ED13.5 and was not detectable at ED14.5. These observations demonstrate that the expression of fascin-1 is correlated with the migration activity of hepatoblasts during the early stages of liver development in rats. This study was supported in part by grant-in-aid for scientific research from the Japan Society for the Promotion of Science and by a grant from the Smoking Research Foundation, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号