首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eu(2+), Dy(3+) and Tb(3+) co-doped strontium aluminate phosphor with high brightness and long afterglow was synthesized by a combustion method, using urea as a reducer. The properties of SrAl(2)O(4):Eu(2+),Dy(3+),Tb(3+) phosphor with a series of initiating combustion temperatures, urea concentrations and boric acid molar fractions were investigated. The sample at initiating combustion temperature of 600 degrees C exhibited an intense emission peak at 513 nm, in which the phosphor existed as a single-phase monoclinic structure. The experimental results showed that the optimum ratio of urea is 2.0 times higher than theoretical quantities and that the suitable molar fraction of H(3)BO(3) is 0.08. The average particle size of the phosphor was 50-80 nm and its luminescence properties were studied systematically. Compared with SrAl(2)O(4):Eu(2+),Dy(3+) phosphor, the initial luminescence brightness improved from 2.50 candela (cd)/m(2) to 3.55 cd/m(2) and the long afterglow time was prolonged from 1290 s to 2743 s.  相似文献   

2.
A blue CaMgSi2O6:Eu2+ phosphor was prepared by the solid‐state reaction method and the phosphor characterized in terms of crystal structure, particle size, photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties using X‐ray diffraction (XRD), transmission electron microscopy (TEM), PL spectroscopy, TLD reader and ML impact technique. The XRD result shows that phosphor is formed in a single phase and has a monoclinic structure with the space group C2/c. Furthermore, the PL excitation spectra of Eu2+‐doped CaMgSi2O6 phosphor showed a strong band peak at 356 nm and the PL emission spectrum has a peak at 450 nm. The depths and frequency factors of trap centers were calculated using the TL glow curve by deconvolution method in which the trap depths were found to be 0.48 and 0.61 eV. The formation of CaMgSi2O6:Eu2+ phosphor was confirmed by Fourier transform infrared spectroscopy. The ML intensity increased linearly with the impact velocity of the piston used to deform the phosphor. It was shown that the local piezoelectricity‐induced electron bombardment model is responsible for the ML emission. Finally, the optical properties of CaMgSi2O6:Eu2+ phosphors are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Non‐cytotoxic and green‐emitting fluorescent hydrogels were constructed from a cellulose solution containing Ba2MgSi2O7:Eu2+ green phosphor in a NaOH/urea aqueous system. The structure, optical properties and cytotoxicity of these hydrogels were studied. The Ba2MgSi2O7:Eu2+ phosphor particles were dispersed evenly in the cellulose hydrogel matrix. Good luminescent properties of Ba2MgSi2O7:Eu2+ phosphor were maintained in the hydrogels, leading to strong green emission under ultraviolet excitation. Fluorescent hydrogels have no obvious cytotoxicity in a 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) proliferation test, and have potential use in in vivo applications like optical imaging and drug delivery.  相似文献   

4.
Ca3(PO4)2:Eu3+ phosphor was prepared using a facile chemistry method in the presence of surfactants. The effects of surfactants on the morphology and photoluminescence properties of Ca3(PO4)2:Eu3+ phosphor were investigated. The morphology of the phosphor was significantly influenced by the surfactants employed. When nonionic surfactant glyceryl monostearate and anionic surfactant sodium dodecylbenzene sulfonate were employed, the phospor powders are composed of a large number of homogeneous spherical particles with sizes of 0.3–0.6 µm and 2–3 µm, respectively. By contrast, when cationic surfactant cetyltrimethylammonium bromide was used, the morphology of the phosphor is completely different. The product is an excellent cuboid, and the phosphor prepared with 2.5 mmol cetyltrimethylammonium bromide showed higher luminescent intensity than phosphors prepared with the other two types of surfactants. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The new borate phosphor CaB2O4:Eu3+ was synthesized by solid‐state method and their photoluminescence properties were investigated. The results show that the pure phase of CaB2O4 could be available at 900°C, CaB2O4:Eu3+ phosphor could be effectively excited by the near ultraviolet light (NUV) (392 nm), and the luminescent intensity of CaB2O4:Eu3+ phosphor reached to the highest when the doped‐Eu3+ content was 4 mol%. The emission spectra of CaB2O4:Eu3+ phosphor could exhibit red emission at 612 nm and orange emission at 588 nm, which are ascribed to the 5D07F2 and 5D07F1 transitions of Eu3+ ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A novel blue‐emitting phosphor, Eu2+‐doping Al4B2O9, was prepared via a modified solid‐state reaction. Al4B2O9:Eu2+ nanoparticles with diameters varying in a range from 20 to 50 nm were obtained using urea as an auxiliary reagent at the optimum temperature of 850°C. The crystallization and particle sizes of Al4B2O9:Eu2+ were investigated using powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Photoluminescence (PL) results showed that Al4B2O9:Eu2+ phosphor could be efficiently excited by the ultraviolet region from 240 to 410 nm, exhibiting bright blue emission. Further investigation on concentration‐dependent emission spectra indicated that the Al3.997B2O9:Eu2+0.003 phosphor exhibited the strongest luminescent, and the relative PL intensity decreased with increasing Eu2+ concentration due to concentration quenching. In addition, the concentration quenching for the one‐Eu‐site emission centers was caused by the electric multipole–multipole interaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Results on optically stimulated luminescence (OSL) in LiCaAlF6:Eu2+ are reported. Continuous wave OSL signal as recorded using blue (470 nm) stimulation was found to be ~31% that of standard phosphor lithium magnesium phosphate. The rate of OSL depletion for standard phosphor lithium magnesium phosphate is only three times less as compared with that of LiCaAlF6:Eu2+. Strong photoluminescence (PL) in the near ultraviolet region is observed for LiCaAlF6:Eu2+ with the characteristic Eu2+ emission at 369 nm for 254 nm excitation. The thermoluminescence (TL) glow peak for LiCaAlF6:Eu2+ was observed at around 180°C. The glow peak was about six times more intense compared with the dosimetric peak of the well known thermoluminescence dosimetric (TLD) phosphor LiF‐TLD 100. Thus this phosphor deserves much more attention than it has received until now and may be useful as a dosimetric material in radiation dosimetry. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
CaF2:Eu2+ is a well known phosphor having efficient excitation in the near ultraviolet (NUV) range. Phosphors with NUV excitation are required in newly emerging applications such as photoluminescence liquid crystal displays (PLLCD), solid‐state lighting (SSL), and down‐conversion for solar cells. However, emission of CaF2:Eu2+ is around 424 nm. Eye sensitivity drops considerably at these wavelengths. It is thus not useful for display applications for which emission in one of the primary colours (blue – 450 nm, green – 540 nm or red – 610 nm) is required. Efforts were made to modify the Photoluminescence (PL) spectra of CaF2:Eu2+ to meet these requirements using co‐dopants. A Ca0.49Sr0.50Eu0.01F2 phosphor showing better colour coordinates and having an emission maximum around 440 nm was discovered during these studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Europium ion (Eu2+) doped Sr2SiO4 phosphors with greenish‐yellow emission were synthesized using microwave‐assisted sintering. The phase structure and photoluminescence (PL) properties of the obtained phosphor samples were investigated. The PL excitation spectra of the Sr2SiO4:Eu2+ phosphors exhibited a broad band in the range of 260 nm to 485 nm with a maximum at 361 nm attributed to the 5f‐4d allowed transition of the Eu2+ ions. Under an excitation at 361 nm, the Sr2SiO4:Eu2+ phosphor exhibited a greenish‐yellow emission peak at 541 nm with an International‐Commission‐on‐Illumination (CIE) chromaticity of (0.3064, 0.4772). The results suggest that the microwave‐assisted sintering method is promising for the synthesis of phosphors owing to the decreased sintering time without the use of additional reductive agents.  相似文献   

10.
A blue‐emitting phosphor Ca12Al14O32F2:Eu2+ was synthesized using a high‐temperature solid‐state reaction under a reductive atmosphere. The X‐ray diffraction measurements indicate that a pure phase Ca12Al14O32F2:Eu2+ can be obtained for low doping concentration of Eu2+. The phosphor has a strong absorption in the range 270–420 nm with a maximum at ~340 nm and blue emission in the range 400–500 nm with chromatic coordination of (0.152, 0.045). The optimal doping concentration is ~0.24. In addition, the luminescence properties of the as‐synthesized phosphor were evaluated by comparison with those of Ca12Al14O32Cl2:Eu2+ and the commercially available phosphor BaMgAl10O17:Eu2+. The emission intensity of Ca12Al14O32F2:Eu2+ was ~72% that of BaMgAl10O17:Eu2+ under excitation at λ = 375 nm. The results indicate that Ca12Al14O32F2:Eu2+ has potential application as a near‐UV‐convertible blue phosphor for white light‐emitting diodes.  相似文献   

11.
A europium (Eu)‐doped di‐calcium magnesium di‐silicate phosphor, Ca2MgSi2O7:Eu2+, was prepared using a solid‐state reaction method. The phase structure, particle size, surface morphology, elemental analysis, different stretching mode and luminescence properties were analyzed by X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) with energy dispersive X‐ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) and mechanoluminescence (ML). The phase structure of Ca2MgSi2O7:Eu2+ was an akermanite‐type structure, which belongs to the tetragonal crystallography with space group P4?21m; this structure is a member of the melilite group and forms a layered compound. The surface of the prepared phosphor was not found to be uniform and particle distribution was in the nanometer range. EDX and FTIR confirm the components of Eu2+‐doped Ca2MgSi2O7 phosphor. Under UV excitation, the main emission peak appeared at 530 nm, belonging to the broad emission ascribed to the 4f65d1→4f7 transition of Eu2+. The ML intensity of the prepared phosphor increased linearly with increasing impact velocity. A CIE color chromaticity diagram and ML spectrum confirmed that the prepared Ca2MgSi2O7:Eu2+ phosphor would emit green color and the ML spectrum was similar to that of PL, which indicated that ML is emitted from the same center of Eu2+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
BaGd2‐xO4:xEu3+ and Ba1‐yGd1.79‐2yEu0.21Na3yO4 phosphors were synthesized at 1300°C in air by conventional solid‐state reaction method. Phosphors were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE) spectra, photoluminescence (PL) spectra and thermoluminescence (TL) spectra. Optimal PL intensity for BaGd2‐xO4:xEu3+ and Ba1‐yGd1.79‐2yEu0.21Na3yO4 phosphors at 276 nm excitation were found to be x = 0.24 and y = 0.125, respectively. The PL intensity of Eu3+ emission could only be enhanced by 1.3 times with incorporation of Na+ into the BaGd2O4 host. Enhanced luminescence was attributed to the flux effect of Na+ ions. However, when BaGd2O4:Eu3+ phosphors were codoped with Na+ ions, the induced defects confirmed by TL spectra impaired the emission intensity of Eu3+ ions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Eu doped ZnAl2O4 phosphors were synthesized by the solution combustion technique using carbohydrazide as a fuel. Mechanoluminescence (ML) was excited impulsively by dropping a piston of 0.7 kg onto the phosphors. Two distinct peaks were observed in the ML glow curve of the γ‐ray irradiated ZnAl2O4:Eu phosphors. Dependence of ML on various parameters as impact velocity of the piston dropped on to it, mass of the sample, gamma ray doses given to the sample and ML spectra have been studied. ML emission spectrum showed the characteristic emission of Eu3+ ion in this system. ML is observed to be optimum for the sample having 0.2 mol% of Eu in the ZnAl2O4 phosphor. XRD result confirms formation of the phosphors. SEM characterization shows its surface morphology. This novel phosphor may be a potential candidate for dosimetric use due to its linear dose response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Near‐UV excited narrow line red‐emitting phosphors, Eu3+‐activated Y2MoO6 systems, were synthesized using a simple molten salt reaction. The structure and photoluminescence characteristics were investigated using X‐ray powder diffraction, UV–Vis absorption and fluorescent spectrophotometry. The excitation spectra show strong broad‐band absorptions in the near‐UV to blue light regions which match the radiation of near‐UV light‐emitting diode chips well. Under excitation of either near‐UV or blue light, intense red emission with a main peak of 611 nm is observed, ascribed to the 5D07F2 transition of Eu3+ ions; the optimal doping concentration is 20 mol%. The chromaticity coordinates (x = 0.65, y = 0.34) of the as‐obtained phosphor are very close to the National Television Standard Committee standard values (x = 0.67, y = 0.33). All these characteristics suggest that this material is a promising red‐emitting phosphor candidate for white‐LEDs based on near‐UV LED chips. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Due to the advantages of good physicochemical properties, thermal stability, and optical properties, double perovskite compounds have received extensive attention. On this basis, a new type of red phosphor, Ca2YNbO6:xEu3+, was synthesized using a high-temperature solid-phase method. Its phase purity, morphology, elemental composition, absorption spectrum, photoluminescence, thermal stability, and Commission Internationale de l'éclairage (CIE) chromaticity coordinates were thoroughly investigated. The results display that there is no impurity phase in the samples and the convergence factor Rwp = 14.2%; the microscopic particles are uniform and full, and the distribution of each element is uniform. The energy band gap ΔE is between 3.71 eV and 3.65 eV. The luminescence intensity is the best when the doped Eu3+ concentration x reaches 0.4, and emits 612 nm red light (5D07F2) under 465 nm excitation, and the concentration quenching is attributed to a d–d interaction. The luminescence intensity at 425 K was still 75% of the room temperature luminescence intensity, which indicates that the thermal stability is extremely superior. The CIE chromaticity coordinates (0.6534, 0.3455) of the Ca2YNbO6:0.4Eu3+ phosphors are very close to National Television Standards Committee (0.670, 0.330), and the samples have low correlated colour temperature (2656 K) and high colour purity (99.90%). All findings suggest that Ca2YNbO6:Eu3+ can serve as a substitute for red phosphor in WLEDs.  相似文献   

16.
Europium (Eu)3+‐substituted La2Li0.5Al0.5O4 red emitting phosphors were prepared by a conventional high‐temperature solid‐state reaction method. Powder X‐ray diffraction, diffuse reflectance spectra and spectrofluorometry were used as vital characterizing tools for the phosphors. The Eu concentration dependence luminescence properties and Judd–Ofelt intensity parameters were investigated and calculated, respectively. All compositions showed an orange red emission (due to the magnetic and electric dipole transitions of the Eu3+ ion) with the appropriate Commission Internationale de l'Eclairage (CIE) colour gamut under near ultraviolet or blue ray light excitation. The calculated critical distance showed that the energy transfer occured between Eu to Eu via an exchange mechanism. The Eu1.4La0.6Li0.5Al0.5O4 composition showed the highest red emission intensity with CIE colour saturation compared with that of the commercial Eu‐activated yttrium oxysulfide red phosphor.  相似文献   

17.
CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were synthesized using the solid‐state reaction method. X‐Ray diffraction (XRD) and photoluminescence (PL) analyses were used to characterize the phosphors. The XRD results revealed that the synthesized CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were crystalline and are assigned to the monoclinic structure with a space group C2/c. The calculated crystal sizes of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors with a main (221) diffraction peak were 44.87 and 53.51 nm, respectively. Energy‐dispersive X‐ray spectroscopy (EDX) confirmed the proper preparation of the sample. The PL emission spectra of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors have a broad band peak at 444.5 and 466 nm, respectively, which is due to electronic transition from 4f65d1 to 4f7. The afterglow results indicate that the CaMgSi2O6:Eu2+,Dy3+ phosphor has better persistence luminescence than the CaMgSi2O6:Eu2+,Ce3+ phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
White light‐emitting diodes (LEDs) for green lighting are new solutions for energy saving and environmental protection. Ca3SiO4Cl2:Ce,Eu is an efficient phosphor for white LEDs. Effective energy transfer from Ce3+ to Eu2+ occurs in Ca3SiO4Cl2:Ce,Eu due to good spectrum overlap between the emission band of Ca3SiO4Cl2:Ce and the excitation band of Ca3SiO4Cl2:Eu, and hues vary systematically from blue to green at different Ce concentrations. A great improvement in the luminescent property of Ca3SiO4Cl2:Eu has been observed on Ce3+ doping, which is attributed to energy transfer from Ce3+ to Eu2+ and an increase in the number of luminescent centers (Eu2+) on Ce doping. The optimal sample has a quantum efficiency of up to 75%, and can be an efficient green phosphor for white LEDs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
An orange‐emitting phosphor, Eu2+‐activated LiSr4(BO3)3, was synthesized using the conventional solid‐state reaction. The photoluminescence excitation and emission spectra, and temperature dependence of the luminescence intensity of the phosphor were investigated. The results showed that LiSr4(BO3)3:Eu2+ could be efficiently excited by incident light of 250–450 nm, and emits a strong orange light. With increasing temperature, the emission bands of LiSr4(BO3)3:Eu2+ show an abnormal blue‐shift with broadening bandwidth and decreasing emission intensity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In the recent few years, Eu2+- and Mn4+-activated phosphors are widely used as potential colour converters for indoor plant cultivation lighting application due to their marvellous luminescence characteristics as well as low cost. In this investigation, we synthesized novel red colour-emitting Ca(2−x)Mg2(SO4)3:xmol% Eu2+ (x = 0–1.0 mol%) phosphors via a solid-state reaction method in a reducing atmosphere. The photoluminescence (PL) excitation spectra of synthesized phosphors exhibited a broad excitation band with three excitation bands peaking at 349 nm, 494 nm, and 554 nm. Under these excitations, emission spectra exhibited a broad band in the red colour region at ~634 nm. The PL emission intensity was measured for different concentrations of Eu2+. The maximum Eu2+ doping concentration in the Ca2Mg2(SO4)3 host was observed for 0.5 mol%. According to Dexter theory, it was determined that dipole–dipole interaction was responsible for the concentration quenching. The luminous red colour emission of the sample was confirmed using Commission international de l'eclairage colour coordinates. The results of PL excitation and emission spectra of the prepared phosphors were well matched with excitation and emission wavelengths of phytochrome PR. Therefore, from the entire investigation and obtained results it was concluded that the synthesized Ca0.995Mg2(SO4)3:0.5mol%Eu2+ phosphor has huge potential for plant cultivation application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号