首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MicroRNAs (miRNAs) play an important role in responding to biotic and abiotic stresses in plants. Jujube witches’-broom a phytoplasma disease of Ziziphus jujuba is prevalent in China and is a serious problem to the industry. However, the molecular mechanism of the disease is poorly understood. In this study, genome-wide identification and analysis of microRNAs in response to witches’-broom was performed. A total of 85 conserved miRNA unique sequences belonging to 32 miRNA families and 24 novel miRNA unique sequences, including their complementary miRNA* strands were identified from small RNA libraries derived from a uninfected and witches’-broom infected Z. jujuba plant. Differentially expressed miRNAs associated with Jujube witches’-broom disease were investigated between the two libraries, and 12 up-regulated miRNAs and 10 down- regulated miRNAs identified with more than 2 fold changes. Additionally, 40 target genes of 85 conserved miRNAs and 49 target genes of 24 novel miRNAs were predicted and their putative functions assigned. Using the modified 5’-RACE method, we confirmed that SPL and MYB were cleaved by miR156 and miR159, respectively. Our results provide insight into the molecular mechanisms of witches’-broom disease in Z. jujuba.  相似文献   

4.
5.
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of target mRNAs in plant growth, development, abiotic stress responses, and pathogen responses. Cold stress is one of the most common abiotic factors affecting plants, and it adversely affects plant growth, development, and spatial distribution. To understand the roles of miRNAs under cold stress in Populus tomentosa, we constructed two small RNA libraries from plantlets treated or not with cold conditions (4 °C for 8 h). High-throughput sequencing of the two libraries identified 144 conserved miRNAs belonging to 33 miRNA families and 29 new miRNAs (as well as their corresponding miRNA1s) belonging to 23 miRNA families. Differential expression analysis showed that 21 miRNAs were down-regulated and nine miRNAs were up-regulated in response to cold stress. Among them, 19 cold-responsive miRNAs, two new miRNAs and their corresponding miRNA1s were validated by qRT-PCR. A total of 101 target genes of the new miRNAs were predicted using a bioinformatics approach. These target genes are involved in growth and resistance to various stresses. The results demonstrated that Populus miRNAs play critical roles in the cold stress response.  相似文献   

6.
7.
8.
9.
10.
11.
MicroRNAs (miRNAs) are a type of small non-coding RNA found in eukaryotes. They play a key role in gene expression by down-regulating gene expression and are involved in the environment stress response in plants. Although a large number of miRNAs have been identified from Arabidopsis, few studies have focused on Oryza sativa miRNAs, especially on stress-related miRNAs. Five cDNA libraries of small RNAs from rice seedlings treated with cold, dehydration, salinity, and abscisic acid (ABA), as well as wild-type seedlings, were constructed. Seven rice novel miRNAs were identified by Northern analysis, and their expression patterns under different stress treatments were determined. Results showed that the expression of several novel miRNAs was regulated by one or more stress treatments. Our identification of novel stress-related miRNAs in rice suggests that these miRNAs might be involved in rice stress response pathways.  相似文献   

12.
MicroRNAs (miRNAs) as small non-coding RNAs play important roles in many biological processes such as development, cell signaling and immune response. Small RNA deep sequencing technology provided an opportunity for a thorough survey of miRNAs in a global key pest Plutella xylostella as well as comparative analysis of miRNA expression profile of the insect in association with parasitization by Diadegma semiclausum. Combining the deep sequencing data and bioinformatics, 235 miRNAs were identified from P. xylostella. Differential expression of host cellular miRNAs in response to parasitism was examined by making small RNA libraries from parasitized and naive second instar larvae of P. xylostella. Bantam, miR-276*, miR-10, miR-31 and miR-184 were detected as five most abundant miRNAs in both libraries and 96 miRNAs were identified that were differentially expressed after parasitization. Bantam*, miR-184 and miR-281* were significantly down-regulated and two miRNAs miR-279b and miR-2944b* were highly induced in parasitized larvae. Interestingly, high copy numbers and differential expression of several miRNA passenger strands (miRNA*) suggest their potential roles in host-parasitoid interaction. In conclusion, expression profiling of miRNAs provided insights into their possible involvement in insect immune response to parasitism and offer an important resource for further studies.  相似文献   

13.

Background

The regulatory role of small RNAs (sRNAs) in various biological processes is an active area of investigation; however, there has been limited information available on the role of sRNAs in plant-insect interactions. This study was designed to identify sRNAs in cotton-melon aphid (Aphis gossypii) during the Vat-mediated resistance interaction with melon (Cucumis melo).

Methodology/Principal Findings

The role of miRNAs was investigated in response to aphid herbivory, during both resistant and susceptible interactions. sRNA libraries made from A. gossypii tissues feeding on Vat+ and Vat plants revealed an unexpected abundance of 27 nt long sRNA sequences in the aphids feeding on Vat+ plants. Eighty-one conserved microRNAs (miRNAs), twelve aphid-specific miRNAs, and nine novel candidate miRNAs were also identified. Plant miRNAs found in the aphid libraries were most likely ingested during phloem feeding. The presence of novel miRNAs was verified by qPCR experiments in both resistant Vat+ and susceptible Vat interactions. The comparative analyses revealed that novel miRNAs were differentially regulated during the resistant and susceptible interactions. Gene targets predicted for the miRNAs identified in this study by in silico analyses revealed their involvement in morphogenesis and anatomical structure determination, signal transduction pathways, cell differentiation and catabolic processes.

Conclusion/Significance

In this study, conserved and novel miRNAs were reported in A. gossypii. Deep sequencing data showed differences in the abundance of miRNAs and piRNA-like sequences in A. gossypii. Quantitative RT-PCR revealed that A. gossypii miRNAs were differentially regulated during resistant and susceptible interactions. Aphids can also ingest plant miRNAs during phloem feeding that are stable in the insect.  相似文献   

14.
MicroRNA genes (miRNAs) encoding small non-coding RNAs are abundant in plant genomes and play a key role in regulating several biological mechanisms. Five conserved miRNAs, miR156, miR168-1, miR168-2, miR164, and miR166 were selected for analysis from the 21 known plant miRNA families that were recovered from deep sequencing data of small RNA libraries of pumpkin and squash. A total of six novel miRNAs that were not reported before were found to have precursors with reliable fold-back structures and hence considered novel and were designated as cuc_nov_miRNAs. A set of five conserved, six novel miRNAs, and five uncharacterized small RNAs from the deep sequencing data were profiled for their dynamic regulation using qPCR. The miRNAs were evaluated for differential regulation across the tissues among four diverse cucurbit species, including pumpkin and squash (Cucurbita moschata Duch. Ex Poir. and Cucurbita pepo L.), bitter melon (Momordica charantia L.), and Luffa (Loofah) (Luffa acutangula Roxb.). Expression analysis revealed differential regulation of various miRNAs in leaf, stem, and fruit tissues. Importantly, differences in the expression levels were also found in the leaves and fruits of closely related C. moschata and C. pepo. Comparative miRNA profiling and expression analysis in four cucurbits led to identification of conserved miRNAs in cucurbits. Predicted targets for two of the conserved miRNAs suggested miRNAs are involved in regulating similar biological mechanisms in various species of cucurbits.  相似文献   

15.
Salt is one of the main environmental factors limiting plant growth and a better understanding of mechanisms of salt stress would aid efforts to bolster plant salt tolerance. MicroRNAs are well known for their important regulatory roles in response to abiotic stress in plants. In this study, high-throughput sequencing was employed to identify miRNAs in Populus tomentosa plantlets treated or not with salt (200 mM for 10 h). We found 141 conserved miRNAs belonging to 31 families, 29 non-conserved but previously-known miRNAs belonging to 26 families, and 17 novel miRNAs. Under salt stress, 19 miRNAs belonging to seven conserved miRNA families were significantly downregulated, and two miRNAs belonging to two conserved miRNA families were upregulated. Of seven non-conserved miRNAs with significantly altered expression, five were downregulated and two were upregulated. Furthermore, eight miRNAs were validated by qRT-PCR and their dynamic differential expressions were analyzed. In addition, 269 target genes of identified miRNAs were predicted and categorized by function. These results provide new insights into salt-responsive miRNAs in Populus.  相似文献   

16.
17.

Background

MicroRNAs (miRNAs) are a class of noncoding small RNAs (sRNAs) that are 20–24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play versatile roles in plants, functioning in processes such as growth, development and stress responses. Chilling is a common abiotic stress that seriously affects plants growth and development. Recently, chilling-responsive miRNAs have been detected in several plant species. However, little is known about the miRNAs in the model plant tomato. ‘LA1777’ (Solanum habrochaites) has been shown to survive chilling stress due to its various characteristics.

Results

Here, two small RNA libraries and two degradome libraries were produced from chilling-treated (CT) and non-chilling-treated (NT) leaves of S. habrochaites seedlings. Following high-throughput sequencing and filtering, 161 conserved and 236 novel miRNAs were identified in the two libraries. Of these miRNAs, 192 increased in the response to chilling stress while 205 decreased. Furthermore, the target genes of the miRNAs were predicted using a degradome sequencing approach. It was found that 62 target genes were cleaved by 42 conserved miRNAs, while nine target genes were cleaved by nine novel miRNAs. Additionally, nine miRNAs and six target genes were validated by quantitative real-time PCR (qRT-PCR). Target gene functional analysis showed that most target genes played positive roles in the chilling response, primarily by regulating the expression of anti-stress proteins, antioxidant enzyme and genes involved in cell wall formation.

Conclusions

Tomato is an important model plant for basic biological research. In this study, numerous conserved and novel miRNAs involved in the chilling response were identified using high-throughput sequencing, and the target genes were analyzed by degradome sequencing. The work helps identify chilling-responsive miRNAs in tomato and increases the number of identified miRNAs involved in chilling stress. Furthermore, the work provides a foundation for further study of the regulation of miRNAs in the plant response to chilling stress.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1130) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
Ou J  Meng Q  Li Y  Xiu Y  Du J  Gu W  Wu T  Li W  Ding Z  Wang W 《Fish & shellfish immunology》2012,32(2):345-352
The Chinese mitten crab Eriocheir sinensis is one of the most important freshwater aquaculture crustacean species in China. MicroRNAs (miRNAs) are small non-coding RNAs that are important effectors in the intricate host-pathogen interaction network. To increase the repertoire of miRNAs characterized in crustaceans and to examine the relationship between host miRNA expression and pathogen infection, we used the Illumina/Solexa deep sequencing technology to sequence two small RNA libraries prepared from haemocytes of E. sinensis under normal conditions and during infection with Spiroplasma eriocheiris. The high-throughput sequencing resulted in approximately 30,975,151 and 30,826,277 raw reads corresponding to 12,077,088 and 16,271,545 high-quality mappable reads for the normal and infected haemocyte samples, respectively. Bioinformatic analyses identified 735 unique miRNAs, including 36 that are conserved in crustaceans, 134 that are novel to crabs but are present in other arthropods (PN-type), and 565 that are completely new (PC-type). Two hundred twenty-eight unique miRNAs displayed significant differential expression between the normal and infected haemocyte samples (p < 0.0001). Of these, 133 (58%) were significantly up-regulated and 95 (42%) were significantly down-regulated upon challenge with S. eriocheiris. Real-time quantitative PCR (RT-qPCR) experiments were preformed for 10 miRNAs of the two samples, and agreement was found between the sequencing and RT-qPCR data. To our knowledge, this is the first report of comprehensive identification of E. sinensis miRNAs and of expression analysis of E. sinensis miRNAs after exposure to S. eriocheiris. Many miRNAs were differentially regulated when exposed to the pathogen, and these findings support the hypothesis that certain miRNAs might be essential in host-pathogen interactions. Our results suggest that elucidation of the molecular mechanisms responsible for miRNA regulation of the host’s innate immune system should help with the development of new control strategies to prevent or treat S. eriocheiris infections in crustaceans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号