首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bisphenol-A (BPA), an environmental endocrine disruptor, has been reported to possess weak estrogenic, anti-estrogenic, and anti-androgen properties. Previous evidence indicates that perinatal exposure to low levels of BPA affects anxiety-like and cognitive behaviors in adult rodents. The present study aims to investigate the effect of BPA on emotional memory using the contextual fear conditioning of male mice in adulthood exposed to BPA for 90 days. The results indicated that exposure to BPA increased the freezing time 1 h and 24 h after fear conditioning training. Furthermore, western blot analyses showed that BPA exposure decreased the level of N-methyl-d-aspartic acid (NMDA) receptor subunit NR1 and increased the expression of histone deacetylase 2 (HDAC2) before fear conditioning training in the hippocampus of male mice. One and twenty-four hours after fear conditioning training, BPA enhanced the changes of the expressions of NR1, phosphorylated extracellular regulated protein kinases (ERK1/2), and histone acetylation induced by contextual fear conditioning in the hippocampus. These results suggest that long term exposure to BPA enhanced fear memory by the concomitant increased level of NMDA receptor and/or the enhanced histone acetylation in the hippocampus, which may be associated with activation of ERK1/2 signaling pathway.  相似文献   

2.
3.
Mitochondrial regulation of synaptic plasticity in the hippocampus   总被引:8,自引:0,他引:8  
Synaptic mechanisms of plasticity are calcium-dependent processes that are affected by dysfunction of mitochondrial calcium buffering. Recently, we observed that mice deficient in mitochondrial voltage-dependent anion channels, the outer component of the mitochondrial permeability transition pore, have impairments in learning and hippocampal synaptic plasticity, suggesting that the mitochondrial permeability transition pore is involved in hippocampal synaptic plasticity. In this study, we examined the effect on synaptic transmission and plasticity of blocking the permeability transition pore with low doses of cyclosporin A and found a deficit in synaptic plasticity and an increase in base-line synaptic transmission. Calcium imaging of presynaptic terminals revealed a transient increase in the resting calcium concentration immediately upon incubation with cyclosporin A that correlated with the changes in synaptic transmission and plasticity. The effect of cyclosporin A on presynaptic calcium was abolished when mitochondria were depolarized prior to cyclosporin A exposure, and the effects of cyclosporin A and mitochondrial depolarization on presynaptic resting calcium were similar, suggesting a mitochondrial locus of action of cyclosporin A. To further characterize the calcium dynamics of the mitochondrial permeability transition pore, we used an in vitro assay of calcium handling by isolated brain mitochondria. Cyclosporin A-exposed mitochondria buffered calcium more rapidly and subsequently triggered a more rapid mitochondrial depolarization. Similarly, mitochondria lacking the voltage-dependent anion channel 1 isoform depolarized more readily than littermate controls. The data suggest a role for the mitochondrial permeability transition pore and voltage-dependent anion channels in mitochondrial synaptic calcium buffering and in hippocampal synaptic plasticity.  相似文献   

4.
Zeng Y  Lv F  Li L  Yu H  Dong M  Fu Q 《Journal of neurochemistry》2012,122(4):800-811
7,8-dihydroxyflavone (7,8-DHF) has recently been identified as a potential TrkB agonist that crosses the blood-brain barrier after i.p. administration. We previously demonstrated that 7,8-DHF in vitro rescues long-term synaptic plasticity in the hippocampus of aged rats. This study assessed the rescue effect of 7,8-DHF in vivo on aging-related cognitive impairment in rats, and further determined whether the effect of 7,8-DHF is age dependent. Aged rats at 22 and 30 months of age were pretested for spatial memory in Morris water maze. The aged-impaired rats were retested twice during 7,8-DHF or vehicle treatment, which started 3 weeks after the completion of the pretest. In the 22-month-old rats, daily i.p. administration of 7,8-DHF for 2 weeks improved spatial memory. The improvement in behavioral tests was associated with increases in synapse formation and facilitation of synaptic plasticity in the hippocampus, as well as the activation of several proteins crucial to synaptic plasticity and memory. A more extended treatment paradigm with 7,8-DHF was required to achieve a significant memory improvement in the severely impaired 30-month-old rats. Moreover, 7,8-DHF moderately facilitated the synaptic plasticity, modified the density but not number of spines in the hippocampus of the oldest rats. Taken together, our results suggest that 7,8-DHF can act in vivo to counteract aging-induced declines in spatial memory and synaptic plasticity and morphological changes of hippocampal neurons. The effect of 7,8-DHF is more pronounced in relatively younger impaired rats than in those of more advanced age. These findings demonstrate the reversal of age-dependent memory impairment by in vivo 7,8-DHF application and support the benefit of early treatment for cognitive aging.  相似文献   

5.
6.
The hypothesis that synaptic plasticity is a critical component of the neural mechanisms underlying learning and memory is now widely accepted. In this article, we begin by outlining four criteria for evaluating the 'synaptic plasticity and memory (SPM)' hypothesis. We then attempt to lay the foundations for a specific neurobiological theory of hippocampal (HPC) function in which activity-dependent synaptic plasticity, such as long-term potentiation (LTP), plays a key part in the forms of memory mediated by this brain structure. HPC memory can, like other forms of memory, be divided into four processes: encoding, storage, consolidation and retrieval. We argue that synaptic plasticity is critical for the encoding and intermediate storage of memory traces that are automatically recorded in the hippocampus. These traces decay, but are sometimes retained by a process of cellular consolidation. However, we also argue that HPC synaptic plasticity is not involved in memory retrieval, and is unlikely to be involved in systems-level consolidation that depends on HPC-neocortical interactions, although neocortical synaptic plasticity does play a part. The information that has emerged from the worldwide focus on the mechanisms of induction and expression of plasticity at individual synapses has been very valuable in functional studies. Progress towards a comprehensive understanding of memory processing will also depend on the analysis of these synaptic changes within the context of a wider range of systems-level and cellular mechanisms of neuronal transmission and plasticity.  相似文献   

7.
Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective role of AQP4 in synaptic plasticity and spatial memory, and underscore the growing appreciation of the role of glial cells in functions typically attributed to neurons. Implications for epilepsy are discussed because of the previous evidence that AQP4 influences seizures, and the role of synaptic plasticity in epileptogenesis.  相似文献   

8.
The relay of extracellular signals into changes in cellular physiology involves a Byzantine array of intracellular signaling pathways, of which cytoplasmic protein kinases are a crucial component. In the nervous system, a great deal of effort has focused on understanding the conversion of patterns of synaptic activity into long-lasting changes in synaptic efficacy that are thought to underlie memory. The goal is both to understand synaptic plasticity mechanisms, such as long-term potentiation, at a molecular level and to understand the relationship of these synaptic mechanisms to behavioral memory. Although both involve the activation of multiple signaling pathways, recent studies are beginning to define discrete roles and mechanisms for individual kinases in the different temporal phases of both synaptic and behavioral plasticity.  相似文献   

9.
The hippocampus is a center for learning and memory as well as a target of Alzheimer's disease in aged humans. Synaptic modulation by estrogen is essential to understand the molecular mechanisms of estrogen replacement therapy. Because the local synthesis of estrogen occurs in the hippocampus of both sexes, in addition to the estrogen supply from the gonads, its functions are attracting much attention.  相似文献   

10.
Mitogen-activated protein kinases in synaptic plasticity and memory   总被引:38,自引:0,他引:38  
This review highlights five areas of recent discovery concerning the role of extracellular-signal regulated kinases (ERKs) in the hippocampus. First, ERKs have recently been directly implicated in human learning through studies of a human mental retardation syndrome. Second, new models are being formulated for how ERKs contribute to molecular information processing in dendrites. Third, a role of ERKs in stabilizing structural changes in dendritic spines has been defined. Fourth, a crucial role for ERKs in regulating local dendritic protein synthesis is emerging. Fifth, the importance of ERK interactions with scaffolding and structural proteins at the synapse is increasingly apparent. These topics are discussed within the context of an emerging role for ERKs in a wide variety of forms of synaptic plasticity and memory formation in the behaving animal.  相似文献   

11.

Background

Nanomaterials, as a new kind of materials, have been greatly applied in different fields due to their special properties. With the industrialization of nanostructured materials and increasing public exposure, the biosafety and potential influences on central nervous system (CNS) have received more attention. Nanosized zinc oxide (nanoZnO) was suggested to up-regulate neuronal excitability and to induce glutamate release in vitro. Therefore, we hypothesized nanoparticles of nanoZnO may lead to changes in balance of neurotransmitter or neuronal excitability of CNS. This study was to investigate if there were effects of nanoZnO on animal model of depression.

Methods

Male Swiss mice were given lipopolysaccharides (LPS, 100 μg/kg, 100 μg/ml, every other day, 8 times, i.p.) from weaning to induce depressive-like behaviors. NanoZnO (5.6 mg/kg, 5.6 mg/ml, every other day, 8 times, i.p.) was given as the interaction. The mouse model was characterized using the methods of open field test, tail suspension test and forced swim test. Furthermore, the spatial memory was evaluated using Morris water maze (MWM) and the synaptic plasticity was assessed by measuring the long-term potentiation (LTP) in the perforant pathway (PP) to dentate gyrus (DG) in vivo.

Results

Results indicated that model mice showed disrupted spatial memory and LTP after LPS injections and the behavioral and electrophysiological improvements after nanoZnO treatment.

Conclusion

Data suggested that nanoZnO may play some roles in CNS of mental disorders, which could provide some useful direction on the new drug exploring and clinical researches.  相似文献   

12.
Emerging evidence shows that Rab11 recycling endosomes (REs Rab11) are essential for several neuronal processes, including the proper functioning of growth cones, synapse architecture regulation and neuronal migration. However, several aspects of REs Rab11 remain unclear, such as its sub-cellular distribution across neuronal development, contribution to dendritic tree organization and its consequences in memory formation. In this work we show a spatio-temporal correlation between the endogenous localization of REs Rab11 and developmental stage of neurons. Furthermore, Rab11-suppressed neurons showed an increase on dendritic branching (without altering total dendritic length) and misdistribution of dendritic proteins in cultured neurons. In addition, suppression of Rab11 in adult rat brains in vivo (by expressing shRab11 through lentiviral infection), showed a decrease on both the sensitivity to induce long-term potentiation and hippocampal-dependent memory acquisition. Taken together, our results suggest that REs Rab11 expression is required for a proper dendritic architecture and branching, controlling key aspects of synaptic plasticity and spatial memory formation.  相似文献   

13.
The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory.  相似文献   

14.
To unravel the molecular and cellular bases of learning and memory is one of the most ambitious goals of modern science. The progress of recent years has not only brought us closer to understanding the molecular mechanisms underlying stable, long-lasting changes in synaptic strength, but it has also provided further evidence that these mechanisms are required for memory formation.  相似文献   

15.
Discovery of long-term potentiation (LTP) in the dentate gyrus of the rabbit hippocampus by Bliss and L?mo opened up a whole new field to study activity-dependent long-term synaptic modifications in the brain. Since then hippocampal synapses have been a key model system to study the mechanisms of different forms of synaptic plasticity. At least for the postsynaptic forms of LTP and long-term depression (LTD), regulation of AMPA receptors (AMPARs) has emerged as a key mechanism. While many of the synaptic plasticity mechanisms uncovered in at the hippocampal synapses apply to synapses across diverse brain regions, there are differences in the mechanisms that often reveal the specific functional requirements of the brain area under study. Here we will review AMPAR regulation underlying synaptic plasticity in hippocampus and neocortex. The main focus of this review will be placed on postsynaptic forms of synaptic plasticity that impinge on the regulation of AMPARs using hippocampal CA1 and primary sensory cortices as examples. And through the comparison, we will highlight the key similarities and functional differences between the two synapses.  相似文献   

16.
The hippocampus synthesizes estrogen and androgen in addition to the circulating sex steroids. Synaptic modulation by hippocampus-derived estrogen or androgen is essential to maintain healthy memory processes. Rapid actions (1-2h) of 17β-estradiol (17β-E2) occur via synapse-localized receptors (ERα or ERβ), while slow genomic E2 actions (6-48h) occur via classical nuclear receptors (ERα or ERβ). The long-term potentiation (LTP), induced by strong tetanus or theta-burst stimulation, is not further enhanced by E2 perfusion in adult rats. Interestingly, E2 perfusion can rescue corticosterone (stress hormone)-induced suppression of LTP. The long-term depression is modulated rapidly by E2 perfusion. Elevation of the E2 concentration changes rapidly the density and head structure of spines in neurons. ERα, but not ERβ, drives this enhancement of spinogenesis. Kinase networks are involved downstream of ERα. Testosterone (T) or dihydrotestosterone (DHT) also rapidly modulates spinogenesis. Newly developed Spiso-3D mathematical analysis is used to distinguish these complex effects by sex steroids and kinases. It has been doubted that the level of hippocampus-derived estrogen and androgen may not be high enough to modulate synaptic plasticity. Determination of the accurate concentration of E2, T or DHT in the hippocampus is enabled by mass-spectrometric analysis in combination with new steroid-derivatization methods. The E2 level in the hippocampus is approximately 8nM for the male and 0.5-2nM for the female, which is much higher than that in circulation. The level of T and DHT is also higher than that in circulation. Taken together, hippocampus-derived E2, T, and DHT play a major role in modulation of synaptic plasticity.  相似文献   

17.
Stress is a biologically significant factor that, by altering brain cell properties, can disturb cognitive processes such as learning and memory, and consequently limit the quality of human life. Extensive rodent and human research has shown that the hippocampus is not only crucially involved in memory formation, but is also highly sensitive to stress. So, the study of stress-induced cognitive and neurobiological sequelae in animal models might provide valuable insight into the mnemonic mechanisms that are vulnerable to stress. Here, we provide an overview of the neurobiology of stress memory interactions, and present a neural endocrine model to explain how stress modifies hippocampal functioning.  相似文献   

18.
19.
We assume that Hebbian learning dynamics (HLD) and spatiotemporal learning dynamics (SLD) are involved in the mechanism of synaptic plasticity in the hippocampal neurons. While HLD is driven by pre- and postsynaptic spike timings through the backpropagating action potential, SLD is evoked by presynaptic spike timings alone. Since the backpropagation attenuates as it nears the distal dendrites, we assume an extreme case as a neuron model where HLD exists only at proximal dendrites and SLD exists only at the distal dendrites. We examined how the synaptic weights change in response to three types of synaptic inputs in computer simulations. First, in response to a Poisson train having a constant mean frequency, the synaptic weights in HLD and SLD are qualitatively similar. Second, SLD responds more rapidly than HLD to synchronous input patterns, while each responds to them. Third, HLD responds more rapidly to more frequent inputs, while SLD shows fluctuating synaptic weights. These results suggest an encoding hypothesis in that a transient synchronous structure in spatiotemporal input patterns will be encoded into distal dendrites through SLD and that persistent synchrony or firing rate information will be encoded into proximal dendrites through HLD.  相似文献   

20.
Hunger elicits feeding behavior by activating Agouti-related peptide (AgRP) neurons. Two recent studies show how fasting, or the hunger hormone ghrelin, promote excitatory glutamate release onto AgRP neurons (Yang et?al., 2011) and increase postsynaptic glutamate receptor-mediated drive (Liu et?al., 2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号