首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Simulations suggest that molecular clock analyses can correctly identify the root of a tree even when the clock assumption is severely violated. Clock-based rooting of phylogenies may be particularly useful when outgroup rooting is problematic. Here, we explore relaxed-clock rooting in the Acer/Dipteronia clade of Sapindaceae, which comprises genera of highly uneven species richness and problematic mutual monophyly. Using an approach that does not presuppose rate autocorrelation between ancestral and descendant branches and hence does not require a rooted a priori topology, we analyzed data from up to seven chloroplast loci for some 50 ingroup species. For comparison, we used midpoint and outgroup rooting and dating methods that rely on rooted input trees, namely penalized likelihood, a Bayesian autocorrelated-rates model, and a strict clock. The chloroplast sequences used here reject a single global substitution rate, and the assumption of autocorrelated rates was also rejected. The root was placed between Acer and Dipteronia by all three rooting methods, albeit with low statistical support. Analyses of Acer diversification with a lineage-through-time plot and different survival models, although sensitive to missing data, suggest a gradual decrease in the average diversification rate. The nine North American species of Acer diverged from their nearest relatives at widely different times: eastern American Acer diverged in the Oligocene and Late Miocene; western American species in the Late Eocene and Mid Miocene; and the Acer core clade, including A. saccharum, dates to the Miocene. Recent diversification in North America is strikingly rare compared to diversification in eastern Asia.  相似文献   

2.
Understanding the dynamics of white-nose syndrome spread in time and space is an important component for the disease epidemiology and control. We reported earlier that a novel partitivirus, Pseudogymnoascus destructans partitivirus-pa, had infected the North American isolates of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome in bats. We showed that the diversity of the viral coat protein sequences is correlated to their geographical origin. Here we hypothesize that the geographical adaptation of the virus could be used as a proxy to characterize the spread of white-nose syndrome. We used over 100 virus isolates from diverse locations in North America and applied the phylogeographic analysis tool BEAST to characterize the spread of the disease. The strict clock phylogeographic analysis under the coalescent model in BEAST showed a patchy spread pattern of white-nose syndrome driven from a few source locations including Connecticut, New York, West Virginia, and Kentucky. The source states had significant support in the maximum clade credibility tree and Bayesian stochastic search variable selection analysis. Although the geographic origin of the virus is not definite, it is likely the virus infected the fungus prior to the spread of white-nose syndrome in North America. We also inferred from the BEAST analysis that the recent long-distance spread of the fungus to Washington had its root in Kentucky, likely from the Mammoth cave area and most probably mediated by a human. The time to the most recent common ancestor of the virus is estimated somewhere between the late 1990s to early 2000s. We found the mean substitution rate of 2 X 10−3 substitutions per site per year for the virus which is higher than expected given the persistent lifestyle of the virus, and the stamping-machine mode of replication. Our approach of using the virus as a proxy to understand the spread of white-nose syndrome could be an important tool for the study and management of other infectious diseases.  相似文献   

3.
Some recent analyses of three mitochondrial DNA regions suggest that sperm whales are the sister group to baleen whales and, therefore, the suborder Odontoceti (toothed whales) constitutes a paraphyletic group. I cladistically analyzed the available morphological data, including that from relevant fossil taxa, for all families of extant cetaceans to test this hypothesis. The results of this analysis unambiguously support a monophyletic Odontoceti including the sperm whales. All synapomorphies that support the Odontoceti node are decisive, not related to the evolution of highly correlated characters, and provide the same result regardless of what order of mammals is used as an outgroup. These numerous, anatomically diverse, and unambiguous characters make this clade one of the best-supported higher-level groupings among mammals. In addition, the fossil evidence refutes a sperm whale/baleen whale clade. Both the molecular and morphological data produce the same unrooted tree. The improper rooting of the molecular tree appears to be producing these seemingly incongruent phylogenies.  相似文献   

4.
Flowering plants represent the most significant branch in the tree of land plants, with respect to the number of extant species, their impact on the shaping of modern ecosystems and their economic importance. However, unlike so many persistent phylogenetic problems that have yielded to insights from DNA sequence data, the mystery surrounding the origin of angiosperms has deepened with the advent and advance of molecular systematics. Strong statistical support for competing hypotheses and recent novel trees from molecular data suggest that the accuracy of current molecular trees requires further testing. Analyses of phytochrome amino acids using a duplicate gene-rooting approach yield trees that unite cycads and angiosperms in a clade that is sister to a clade in which Gingko and Cupressophyta are successive sister taxa to gnetophytes plus Pinaceae. Application of a cycads + angiosperms backbone constraint in analyses of a morphological dataset yields better resolved trees than do analyses in which extant gymnosperms are forced to be monophyletic. The results have implications both for our assessment of uncertainty in trees from sequence data and for our use of molecular constraints as a way to integrate insights from morphological and molecular evidence.  相似文献   

5.
Molecular phylogeny of the Siphonocladales (Chlorophyta: Cladophorophyceae)   总被引:5,自引:2,他引:3  
The Siphonocladales are tropical to warm-temperate, marine green macro-algae characterized by a wide variety of thallus morphologies, ranging from branched filaments to pseudo-parenchymatous plants. Phylogenetic analyses of partial large subunit (LSU) rDNA sequences sampled from 166 isolates revealed nine well-supported siphonocladalean clades. Analyses of a concatenated dataset of small subunit (SSU) and partial LSU rDNA sequences greatly clarified the phylogeny of the Siphonocladales. However, the position of the root of the Siphonocladales could not be determined unambiguously, as outgroup rooting and molecular clock rooting resulted in a different root placement. Different phylogenetic methods (likelihood, parsimony and distance) yielded similar tree topologies with comparable internal node resolution. Likewise, analyses under more realistic models of sequence evolution, taking into account differences in evolution between stem and loop regions of rRNA, did not differ markedly from analyses using standard four-state models. The molecular phylogeny revealed that all siphonocladalean architectures may be derived from a single Cladophora-like ancestor. Parallel and convergent evolution of various morphological characters (including those traditionally employed to circumscribe the families and genera) have occurred in the Siphonocladales. Consequently, incongruence with traditional classifications, including non-monophyly in all families and most genera, was shown.  相似文献   

6.
Numerous studies covering some aspects of SARS-CoV-2 data analyses are being published on a daily basis, including a regularly updated phylogeny on nextstrain.org. Here, we review the difficulties of inferring reliable phylogenies by example of a data snapshot comprising a quality-filtered subset of 8,736 out of all 16,453 virus sequences available on May 5, 2020 from gisaid.org. We find that it is difficult to infer a reliable phylogeny on these data due to the large number of sequences in conjunction with the low number of mutations. We further find that rooting the inferred phylogeny with some degree of confidence either via the bat and pangolin outgroups or by applying novel computational methods on the ingroup phylogeny does not appear to be credible. Finally, an automatic classification of the current sequences into subclasses using the mPTP tool for molecular species delimitation is also, as might be expected, not possible, as the sequences are too closely related. We conclude that, although the application of phylogenetic methods to disentangle the evolution and spread of COVID-19 provides some insight, results of phylogenetic analyses, in particular those conducted under the default settings of current phylogenetic inference tools, as well as downstream analyses on the inferred phylogenies, should be considered and interpreted with extreme caution.  相似文献   

7.
The multispecies coalescent model provides a natural framework for species tree estimation accounting for gene-tree conflicts. Although a number of species tree methods under the multispecies coalescent have been suggested and evaluated using simulation, their statistical properties remain poorly understood. Here, we use mathematical analysis aided by computer simulation to examine the identifiability, consistency, and efficiency of different species tree methods in the case of three species and three sequences under the molecular clock. We consider four major species-tree methods including concatenation, two-step, independent-sites maximum likelihood, and maximum likelihood. We develop approximations that predict that the probit transform of the species tree estimation error decreases linearly with the square root of the number of loci. Even in this simplest case, major differences exist among the methods. Full-likelihood methods are considerably more efficient than summary methods such as concatenation and two-step. They also provide estimates of important parameters such as species divergence times and ancestral population sizes,whereas these parameters are not identifiable by summary methods. Our results highlight the need to improve the statistical efficiency of summary methods and the computational efficiency of full likelihood methods of species tree estimation.  相似文献   

8.
We propose a Bayesian method for testing molecular clock hypotheses for use with aligned sequence data from multiple taxa. Our method utilizes a nonreversible nucleotide substitution model to avoid the necessity of specifying either a known tree relating the taxa or an outgroup for rooting the tree. We employ reversible jump Markov chain Monte Carlo to sample from the posterior distribution of the phylogenetic model parameters and conduct hypothesis testing using Bayes factors, the ratio of the posterior to prior odds of competing models. Here, the Bayes factors reflect the relative support of the sequence data for equal rates of evolutionary change between taxa versus unequal rates, averaged over all possible phylogenetic parameters, including the tree and root position. As the molecular clock model is a restriction of the more general unequal rates model, we use the Savage-Dickey ratio to estimate the Bayes factors. The Savage-Dickey ratio provides a convenient approach to calculating Bayes factors in favor of sharp hypotheses. Critical to calculating the Savage-Dickey ratio is a determination of the prior induced on the modeling restrictions. We demonstrate our method on a well-studied mtDNA sequence data set consisting of nine primates. We find strong support against a global molecular clock, but do find support for a local clock among the anthropoids. We provide mathematical derivations of the induced priors on branch length restrictions assuming equally likely trees. These derivations also have more general applicability to the examination of prior assumptions in Bayesian phylogenetics.  相似文献   

9.
The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation. We show that all three alignments contain meaningful rooting information that can be harnessed by these new models, thus complementing and extending previous work based on outgroup rooting. In particular, our analyses exclude the root of the tree of life from the eukaryotes or Archaea, placing it on the bacterial stem or within the Bacteria. They also exclude the root of the archaeal radiation from several major clades, consistent with analyses using other rooting methods. Overall, our results demonstrate the utility of non-reversible and non-stationary models for rooting phylogenetic trees, and identify areas where further progress can be made.  相似文献   

10.
The Hymenoptera--ants, bees and wasps--represent one of the most successful but least understood insect radiations. We present the first comprehensive molecular study spanning the entire order Hymenoptera. It is based on approximately 7 kb of DNA sequence from 4 gene regions (18S, 28S, COI and EF-1α) for 116 species representing all superfamilies and 23 outgroup taxa from eight orders of Holometabola. Results are drawn from both parsimony and statistical (Bayesian and likelihood) analyses, and from both by-eye and secondary-structure alignments. Our analyses provide the first firm molecular evidence for monophyly of the Vespina (Orussoidea+Apocrita). Within Vespina, our results indicate a sister-group relationship between Ichneumonoidea and Proctotrupomorpha, while the stinging wasps (Aculeata) are monophyletic and nested inside Evaniomorpha. In Proctotrupomorpha, our results provide evidence for a novel core clade of proctotrupoids, and support for the recently proposed Diaprioidea. An unexpected result is the support for monophyly of a clade of wood-boring sawflies (Xiphydrioidea+Siricoidea). As in previous molecular studies, Orussidae remain difficult to place and are either sister group to a monophyletic Apocrita, or the sister group of Stephanidae within Apocrita. Both results support a single origin of parasitism, but the latter would propose a controversial reversal in the evolution of the wasp-waist. Generally our results support earlier hypotheses, primarily based on morphology, for a basal grade of phytophagous families giving rise to a single clade of parasitic Hymenoptera, the Vespina, from which predatory, pollen-feeding, gall-forming and eusocial forms evolved.  相似文献   

11.
Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is of zoonotic origin. Evolutionary analyses assessing whether coronaviruses similar to SARS-CoV-2 infected ancestral species of modern-day animal hosts could be useful in identifying additional reservoirs of potentially dangerous coronaviruses. We reasoned that if a clade of species has been repeatedly exposed to a virus, then their proteins relevant for viral entry may exhibit adaptations that affect host susceptibility or response. We perform comparative analyses across the mammalian phylogeny of angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, in order to uncover evidence for selection acting at its binding interface with the SARS-CoV-2 spike protein. We uncover that in rodents there is evidence for adaptive amino acid substitutions at positions comprising the ACE2-spike interaction interface, whereas the variation within ACE2 proteins in primates and some other mammalian clades is not consistent with evolutionary adaptations. We also analyze aminopeptidase N (APN), the receptor for the human coronavirus 229E, a virus that causes the common cold, and find evidence for adaptation in primates. Altogether, our results suggest that the rodent and primate lineages may have had ancient exposures to viruses similar to SARS-CoV-2 and HCoV-229E, respectively.  相似文献   

12.
The molecular relationship of placental mammals has attracted great interest in recent years. However, 2 crucial and conflicting hypotheses remain, one with respect to the position of the root of the eutherian tree and the other the relationship between the orders Rodentia, Lagomorpha (rabbits, hares), and Primates. Although most mitochondrial (mt) analyses have suggested that rodents have a basal position in the eutherian tree, some nuclear data in combination with mt-rRNA genes have placed the root on the so-called African clade or on a branch that includes this clade and the Xenarthra (e.g., anteater and armadillo). In order to generate a new and independent set of molecular data for phylogenetic analysis, we have established cDNA sequences from different tissues of various mammalian species. With this in mind, we have identified and sequenced 8 housekeeping genes with moderately fast rate of evolution from 22 placental mammals, representing 11 orders. In order to determine the root of the eutherian tree, the same genes were also sequenced for 3 marsupial species, which were used as outgroup. Inconsistent with the analyses of nuclear + mt-rRNA gene data, the current data set did not favor a basal position of the African clade or Xenarthra in the eutherian tree. Similarly, by joining rodents and lagomorphs on the same basal branch (Glires hypothesis), the data set is also inconsistent with the tree commonly favored in mtDNA analyses. The analyses of the currently established sequences have helped examination of problematic parts in the eutherian tree at the same time as they caution against suggestions that have claimed that basal eutherian relationships have been conclusively settled.  相似文献   

13.
The outgroup method is widely used to root phylogenetic trees. An accurate root indication, however, strongly depends on the availability of a proper outgroup. An alternate rooting method is the midpoint rooting (MPR). In this case, the root is set at the midpoint between the two most divergent operational taxonomic units. Although the midpoint rooting algorithm has been extensively used, the efficiency of this method in retrieving the correct root remains untested. In the present study, we empirically tested the success rate of the MPR in obtaining the outgroup root for a given phylogenetic tree. This was carried out by eliminating outgroups in 50 selected data sets from 33 papers and rooting the trees with the midpoint method. We were thus able to compare the root position retrieved by each method. Data sets were separated into three categories with different root consistencies: data sets with a single outgroup taxon (54% success rate for MPR), data sets with multiple outgroup taxa that showed inconsistency in root position (82% success rate), and data sets with multiple outgroup taxa in which root position was consistent (94% success rate). Interestingly, the more consistent the outgroup root is, the more successful MPR appears to be. This is a strong indication that the MPR method is valuable, particularly for cases where a proper outgroup is unavailable.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 669–674.  相似文献   

14.
Evidence for a gram-positive, eubacterial root of the tree of life   总被引:2,自引:0,他引:2  
Directed indels, insertions, and deletions within paralogous genes, have the potential to root the tree of life. Here we apply a newly developed rooting algorithm, top-down rooting, to indels found in informational and operational gene sets, introduce new computational tools for indel analyses, and present evidence (P < .01) that the root of the tree of life is not present in its traditional location, between the Eubacteria and the Archaebacteria. Using indels contained in the dihydroorotate dehydrogenase/uroporphyrinogen decarboxylase gene pair and in the ribosomal protein S12/beta prime subunit of the RNA polymerase gene pair, we exclude the root from within the clade consisting of the Firmicutes plus the Archaebacteria and their most recent common ancestor. These results, plus previous directed indel studies excluding the root from the eukaryotes, restrict the root to just four possible sites. One potential root is on the branch leading to the double-membrane prokaryotes, another is on the branch leading to the Actinobacteria, another is within the Actinobacteria, and the fourth is on the branch leading to the Firmicutes-Archaea clade. These results imply (1) that the cenancestral population was not hyperthermophilic, but moderate thermophily cannot be excluded for the root on the branch leading to the Firmicutes-Archaea clade, (2) that the cenancestral population was surrounded by ester lipids and a peptidoglycan layer, and (3) that parts of the mevalonate synthesis pathway were present in the population ancestral to the Bacilli and the Archaebacteria, including geranylgeranylglyceryl phosphate synthase, an enzyme thought to be partially responsible for the unique sn-1 stereochemistry of the archaeal glycerol phosphate backbone.  相似文献   

15.
A molecular clock based on ITS sequence data from the lichen genera Biatora and Phyllopsora is calibrated with the help of paleoclimatic data and evidence of forest history. The clock indicates that diversification within Biatora started as early as in the Late Cretaceous and took place during periods of climatic cooling, when new types of forest evolved and spread in the Northern Hemisphere. Arctic-alpine species of the genus appear to be of considerable age, dating back to the Late Eocene-Oligocene climatic cooling. By using calibrated phylogenies of epiphytic lichens it may become possible to date many paleoenvironmental events, for which little fossil evidence exists.  相似文献   

16.
Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology.Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions.Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme.Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ.  相似文献   

17.
Questions persist as to the origin of the COVID-19 pandemic. Evidence is building that its origin as a zoonotic spillover occurred prior to the officially accepted timing of early December, 2019. Here we provide novel methods to date the origin of COVID-19 cases. We show that six countries had exceptionally early cases, unlikely to represent part of their main case series. The model suggests a likely timing of the first case of COVID-19 in China as November 17 (95% CI October 4). Origination dates are discussed for the first five countries outside China and each continent. Results infer that SARS-CoV-2 emerged in China in early October to mid-November, and by January, had spread globally. This suggests an earlier and more rapid timeline of spread. Our study provides new approaches for estimating dates of the arrival of infectious diseases based on small samples that can be applied to many epidemiological situations.  相似文献   

18.
The phylogenetic relationships of 46 echinoids, with representatives from 13 of the 14 ordinal-level clades and about 70% of extant families commonly recognized, have been established from 3 genes (3,226 alignable bases) and 119 morphological characters. Morphological and molecular estimates are similar enough to be considered suboptimal estimates of one another, and the combined data provide a tree that, when calibrated against the fossil record, provides paleontological estimates of divergence times and completeness of their fossil record. The order of branching on the cladogram largely agrees with the stratigraphic order of first occurrences and implies that their fossil record is more than 85% complete at family level and at a resolution of 5-Myr time intervals. Molecular estimates of divergence times derived from applying both molecular clock and relaxed molecular clock models are concordant with estimates based on the fossil record in up to 70% of cases, with most concordant results obtained using Sanderson's semiparametric penalized likelihood method and a logarithmic-penalty function. There are 3 regions of the tree where molecular and fossil estimates of divergence time consistently disagree. Comparison with results obtained when molecular divergence dates are estimated from the combined (morphology + gene) tree suggests that errors in phylogenetic reconstruction explain only one of these. In another region the error most likely lies with the paleontological estimates because taxa in this region are demonstrated to have a very poor fossil record. In the third case, morphological and paleontological evidence is much stronger, and the topology for this part of the molecular tree differs from that derived from the combined data. Here the cause of the mismatch is unclear but could be methodological, arising from marked inequality of molecular rates. Overall, the level of agreement reached between these different data and methodological approaches leads us to believe that careful application of likelihood and Bayesian methods to molecular data provides realistic divergence time estimates in the majority of cases (almost 80% in this specific example), thus providing a remarkably well-calibrated phylogeny of a character-rich clade of ubiquitous marine benthic invertebrates.  相似文献   

19.
Constraining the origin of animal groups is allowed, to some extent, by discoveries of Cambrian Lagerstätten that preserve both mineralizing and nonmineralizing organisms. A new species is reported here of the Cambrian arthropod Skania, which bears an exoskeleton that shares homologies with the Neoproterozoic (Ediacaran) organism Parvancorina and firmly establishes a Precambrian root for arthropods. A new monophyletic group, Parvancorinomorpha, is proposed as the first clade within the arthropod crown group demonstrably ranging across the Neoproterozoic–Paleozoic transition. The Parvancorinomorpha is interpreted to be the sister group of the Arachnomorpha. Incipient cephalization in Skania and related genera represents a step in the progression toward division of a cephalon from a large posterior trunk as shown in Cambrian arachnomorphs such as naraoiids and the addition of a pygidium and thoracic tergites as shown in the arachnomorph clade basal to trilobites. This evidence can serve as a new calibration point for estimating the divergence time for the last common ancestor of arthropods and priapulids based on molecular clock methods.  相似文献   

20.
Recent attempts to establish a molecular time-scale of eukaryote evolution failed to provide a congruent view on the timing of the origin and early diversification of eukaryotes. The major discrepancies in molecular time estimates are related to questions concerning the calibration of the tree. To limit these uncertainties, we used here as a source of calibration points the rich and continuous microfossil record of dinoflagellates, diatoms and coccolithophorids. We calibrated a small-subunit ribosomal RNA tree of eukaryotes with four maximum and 22 minimum time constraints. Using these multiple calibration points in a Bayesian relaxed molecular clock framework, we inferred that the early radiation of eukaryotes occurred near the Mesoproterozoic-Neoproterozoic boundary, about 1100 million years ago. Our results indicate that most Proterozoic fossils of possible eukaryotic origin cannot be confidently assigned to extant lineages and should therefore not be used as calibration points in molecular dating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号