首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphibian behavioral endocrinology has focused on reproductive social behavior and communication in frogs and newts. Androgens and estrogens are critical for the expression of male and female behavior, respectively, and their effects are relatively clear. Corticosteroids have significant modulatory effects on the behavior of both sexes, as does the peptide neuromodulator arginine vasotocin in males, but their effects and interactions with gonadal steroids are often complex and difficult to understand. Recent work has shown that the gonadal hormones and social behavior are mutually reinforcing: engaging in social interactions increases hormone levels just as increasing hormone levels change behavior. The reciprocal interactions of hormones and behavior, as well as the complex interactions among gonadal steroids, adrenal steroids, and peptide hormones have implications for the maintenance and evolution of natural social behavior, and suggest that a deeper understanding of both endocrine mechanisms and social behavior would arise from field studies or other approaches that combine behavioral endocrinology with behavioral ecology.  相似文献   

2.
Seasonal changes in steroid hormones are known to have a major impact on social behavior, but often are quite sensitive to environmental context. In the bi-directionally sex changing fish, Lythrypnus dalli, stable haremic groups exhibit baseline levels of interaction. Status instability follows immediately after male removal, causing transiently elevated agonistic interactions and increase in brain and systemic levels of a potent fish androgen, 11-ketotestosterone (KT). Coupling KT implants with a socially inhibitory environment for protogynous sex change induces rapid transition to male morphology, but no significant change in social behavior and status, which could result from systemically administered steroids not effectively penetrating into brain or other tissues. Here, we first determined the degree to which exogenously administered steroids affect the steroid load within tissues. Second, we examined whether coupling a social environment permissive to sex change would influence KT effects on agonistic behavior. We implanted cholesterol (Chol, control) or KT in the dominant individual (alpha) undergoing sex change (on d0) and determined the effects on behavior and the degree to which administered steroids altered the steroid load within tissues. During the period of social instability, there were rapid (within 2 h), but transient effects of KT on agonistic behavior in alphas, and secondary effects on betas. On d3 and d5, all KT, but no Chol, treated females had male typical genital papillae. Despite elevated brain and systemic KT 5 days after implant, overall rates of aggressive behavior remained unaffected. These data highlight the importance of social context in mediating complex hormone–behavior relationships.  相似文献   

3.
Two major characteristics of males that affect the likelihood of achieving copulation are the sexual motivation and mating competency of the male. The behavior of domestic animals, including their sexual behavior, is dependent upon a complex interaction between the organism's internal and external environment. In male pigs, as in other mammalian species, it is clear that testicular steroids are required to maintain sexual behavior and testosterone plays a critical role. Consistent with studies in other species, it is apparent in male pigs that there is a threshold circulating concentration of androgens and/or estrogens required to maintain sexual behavior and that the level of sexual motivation is unrelated to levels of sex steroids providing these are adequate for normal sexual behavior. Key aspects of the external environment that affect the sexual behavior of the male pig include genetic, seasonal, social, sexual and psychological factors.  相似文献   

4.
Sex steroids can both modulate and be modulated by behavior, and their actions are mediated by complex interactions among multiple hormone sources and targets. While gonadal steroids delivered via circulation can affect behavior, changes in local brain steroid synthesis also can modulate behavior. The relative steroid load across different tissues and the association of these levels with rates of behavior have not been well studied. The bluebanded goby (Lythrypnus dalli) is a sex changing fish in which social status determines sexual phenotype. We examined changes in steroid levels in brain, gonad and body muscle at either 24 hours or 6 days after social induction of protogynous sex change, and from individuals in stable social groups not undergoing sex change. For each tissue, we measured levels of estradiol (E2), testosterone (T) and 11-ketotestosterone (KT). Females had more T than males in the gonads, and more E2 in all tissues but there was no sex difference in KT. For both sexes, E2 was higher in the gonad than in other tissues while androgens were higher in the brain. During sex change, brain T levels dropped while brain KT increased, and brain E2 levels did not change. We found a positive relationship between androgens and aggression in the most dominant females but only when the male was removed from the social group. The results demonstrate that steroid levels are responsive to changes in the social environment, and that their concentrations vary in different tissues. Also, we suggest that rapid changes in brain androgen levels might be important in inducing behavioral and/or morphological changes associated with protogynous sex change.  相似文献   

5.
In social species animals should fine-tune the expression of their social behavior to social environments in order to avoid the costs of engaging in costly social interactions. Therefore, social competence, defined as the ability of an animal to optimize the expression of its social behavior as a function of the available social information, should be considered as a performance trait that impacts on the Darwinian fitness of the animal. Social competence is based on behavioral plasticity which, in turn, can be achieved by different neural mechanisms of plasticity, namely by rewiring or by biochemically switching nodes of a putative neural network underlying social behavior. Since steroid hormones respond to social interactions and have receptors extensively expressed in the social behavioral neural network, it is proposed that steroids play a key role in the hormonal modulation of social plasticity. Here, we propose a reciprocal model for the action of androgens on short-term behavioral plasticity and review a set of studies conducted in our laboratory using an African cichlid fish (Oreochromis mossambicus) that provide support for it. Androgens are shown to be implicated as physiological mediators in a wide range of social phenomena that promote social competence, namely by adjusting the behavioral response to the nature of the intruder and the presence of third parties (dear enemy and audience effects), by anticipating territorial intrusions (bystander effect and conditioning of the territorial response), and by modifying future behavior according to prior experience of winning (winner effect). The rapid behavioral actions of socially induced short-term transient changes in androgens indicate that these effects are most likely mediated by nongenomic mechanisms. The fact that the modulation of rapid changes in behavior is open to the influence of circulating levels of androgens, and is not exclusively achieved by changes in central neuromodulators, suggests functional relevance of integrating body parameters in the behavioral response. Thus, the traditional view of seeing neural circuits as unique causal agents of behavior should be updated to a brain-body-environment perspective, in which these neural circuits are embodied and the behavioral performance (and outcomes as fitness) depends on a dynamic relationship between the different levels. In this view hormones play a major role as behavioral modulators.  相似文献   

6.
Gonadal steroids are essential for the long-term maintenance of the full repertoire of sexual behavior in male rodents. Typically, all individuals of several species cease to display the ejaculatory reflex within a few weeks of castration. The present study documents the persistence of the ejaculatory reflex 19 weeks after orchidectomy in 40% of male Siberian hamsters maintained in long or short day lengths; testosterone was undetectable in the circulation of these animals. Intact hamsters transferred from a long to a short photoperiod underwent gonadal regression: 50% of these animals continued to display mating behavior culminating in ejaculation throughout 25 weeks of testing. The remaining animals failed to ejaculate after approximately 11 weeks of short day treatment but resumed mating coincident with spontaneous gonadal recrudescence. Activation of sex behavior in the latter cohort appears to depend on gonadal steroids and is in contrast to the copulatory behavior of the substantial proportion of the study population that sustains the full sexual repertoire in the long-term absence of gonadal steroids. Sex behavior of the latter animals may be dependent on nongonadal steroids or mediation by steroid-independent mechanisms.  相似文献   

7.
Testosterone (T) induces singing behavior and mediates changes in the sizes and neuroanatomical characteristics of brain regions controlling singing behavior (song control regions, SCRs) in songbirds. These effects may require the enzymatic conversion of T into androgenic and estrogenic metabolites by brain tissues and can be modulated by factors such as season and social context. Testosterone administration to adult male House Finches, Carpodacus mexicanus, in the spring increases the size of their SCRs. Here, we used males of this species to investigate effects of T and T metabolism on brain morphology and singing behavior in the fall. Birds received Silastic capsules containing androgens, estrogens, and/or inhibitors of androgenic action or estrogen synthesis to determine effects of these hormones on song rates and SCR volumes. We also manipulated the social environment by changing the number of birds in visual contact with each other. Testosterone treatment stimulated singing behavior in finches held in small, visually isolated groups and exposed to song playbacks. However, administration of T or T metabolites did not increase SCR sizes. The data suggest that photoperiodic condition and social context may modulate the effects of steroids on SCRs and singing behavior.  相似文献   

8.
Several pregnene-type steroids, such as progesterone, 19-norprogesterone, dydrogesterone, hydroxydione, corticosterone, deoxycorticosterone, cortisone, and hydrocortisone, were tested on passive avoidance behavior. All steroids except dydrogesterone resulted in an impairment of passive avoidance behavior as shown by decreased avoidance latencies, whereas cortisone appears to have only a weak effect in this respect.  相似文献   

9.
Extinction behavior was nearly absent in rats adrenalectomized one hour prior to forced extinction of a passive avoidance response. A low dose of corticosterone administered immediately after adrenalectomy normalized extinction behavior. Progesterone, 11-deoxycorticosterone and the synthetic glucocorticoid dexamethasone were not effective at the same or ten times higher doses. Instead, pre-treatment with these steroids prevented the normalizing effect of corticosterone on extinction behavior. These characteristics of steroid effects on behavior correspond to the strict specificity of the corticosterone receptor system in hippocampal neurons. The agonist or antagonist interaction of naturally occurring adrenal steroids with brain cells may serve behavioral adaptation.  相似文献   

10.
Japanese quail (Coturnix japonica; referred to simply as quail in this article) readily exhibit sexual behavior and related social behaviors in captive conditions and have therefore proven valuable for studies of how early social experience can shape adult mate preference and sexual behavior. Quail have also been used in sexual conditioning studies illustrating that natural stimuli predict successful reproduction via Pavlovian processes. In addition, they have proven to be a good model to study how variation in photoperiod regulates reproduction and how variation in gonadal steroid hormones controls sexual behavior. For example, studies have shown that testosterone activates male-typical behaviors after being metabolized into estrogenic and androgenic metabolites. A critical site of action for these metabolites is the medial preoptic nucleus (POM), which is larger in males than in females. The enzyme aromatase converts testosterone to estradiol and is enriched in the POM in a male-biased fashion. Quail studies were the first to show that this enzyme is regulated both relatively slowly via genomic actions of steroids and more quickly via phosphorylation. With this base of knowledge and the recent cloning of the entire genome of the closely related chicken, quail will be valuable for future studies connecting gene expression to sexual and social behaviors.  相似文献   

11.
Immature male chickens were treated with testosterone (1 mg/day), Δ4-androstenedione (1 mg/day), 5α-dihydrotestosterone (5α-DHT; 1 mg/day), 5α-androstanedion (1 mg/day), or estradiol (100 μg/day) in order to assess the effects of these steroids on copulatory behavior, agonistic behavior, and attentional processes. Testosterone, estradiol, and 5α-DHT were most effective in stimulating male copulatory behavior above that of oil-treated controls; whereas Δ4-androstenedione and 5α-androstanedione had less, but nevertheless significant, effects on this behavior. Testosterone and 5α-DHT facilitated agonistic behavior; however, estradiol, 5α-androstanedione, and Δ4-androstenedione were ineffective in this capacity. The persistence of response to a given stimulus type was increased by testosterone and decreased by 5α-DHT: 5α-Androstanedione had no discernible effect on this behavior. These findings suggest that in the male chicken the neural structures regulating male copulatory and aggressive behavior as well as attentional processes are differentially sensitive to sex steroids. The effects of all these steroids on somatic structures were assessed.  相似文献   

12.
A contribution to a special issue on Hormones and Human Competition.The relationship between androgenic hormones, like testosterone (T), and aggression is extensively studied in human populations. Yet, while this work has illuminated a variety of principals regarding the behavioral and phenotypic effects of T, it is also hindered by inherent limitations of performing research on people. In these instances, animal research can be used to gain further insight into the complex mechanisms by which T influences aggression. Here, we explore recent studies on T and aggression in numerous vertebrate species, although we focus primarily on males and on a New World rodent called the California mouse (Peromyscus californicus). This species is highly territorial and monogamous, resembling the modern human social disposition. We review (i) how baseline and dynamic T levels predict and/or impact aggressive behavior and disposition; (ii) how factors related to social and physical context influence T and aggression; (iii) the reinforcing or “rewarding” aspects of aggressive behavior; and (iv) the function of T on aggression before and during a combative encounter. Included are areas that may need further research. We argue that animal studies investigating these topics fill in gaps to help paint a more complete picture of how androgenic steroids drive the output of aggressive behavior in all animals, including humans.  相似文献   

13.
Sexually experienced female musk shrews (Suncus murinus) lack an ovarian, vaginal, and behavioral estrous cycle. Females, once induced by their initial contact with a male, are able to display copulatory behavior whenever a male is present (Rissman, Silveira, and Bronson, 1988). Based on plasma levels of steroids, and on hormone replacement studies conducted after ovariectomy (OVX), we have shown that testosterone (T) plays an essential role in the regulation of female sexual behavior (Rissman and Crews, 1988; Rissman, Clendenon, and Krohmer, 1990a; Rissman, 1991). To date we have only examined the potential contribution of adrenal steroids to female sexual behavior in a preliminary manner. After adrenalectomy, gonadally intact females display significantly lower levels of sexual behavior than controls (Rissman and Bronson, 1987). The following experiments were conducted to examine the role the adrenal steroids (in contrast to the medullary hormones) play in the induction of female sexual behavior in the musk shrew. In the first experiment gonadally intact females were treated with dexamethasone (DEX) to reduce the secretion of adrenal steroids. Significantly fewer females receiving DEX demonstrated sexual behavior as compared with controls. In the second study, OVX females received T-filled Silastic implants. When DEX was administered to OVX + T females at a dose that dropped circulating T levels to those found in ovary and adrenal intact females, no effect on sexual behavior was noted. The data show that the adrenals are a behaviorally important source of T and contribute toward the hormonal control of sexual behavior in these female mammals.  相似文献   

14.
Zebra finches, like many other animals, have close social relationships mainly with the family at young ages but begin to express interest in opposite-sex extra-family animals as they enter the late juvenile period and sexual maturity. This experiment tested a set of hypotheses that sex steroids are involved in this developmental transition. At 25-30 days, subjects were implanted subcutaneously with Silastic tubes that were empty (controls), filled with testosterone propionate, filled with estradiol benzoate, or filled with a combination of ATD (an aromatization inhibitor) and flutamide (an anti-androgen). Once a week between ages 30 and 90 days, they were given three-choice tests where the three stimulus types were the family members, unpaired males, or unpaired females. The preferred category was defined as the one adjacent to the proximity zone in which the subject spent the most time. Control males were more likely to prefer females and less likely to prefer the family as they got older, and control females were increasingly likely to prefer males. Males treated with testosterone or estradiol showed a premature increase in preferences for females. Females treated with ATD plus flutamide failed to show the normal increase in preferences for males shown by controls. These results indicate an involvement of sex steroids in the maturation of sexual preferences in a socially monogamous species that relies on visual and auditory, rather than olfactory, cues for sexual or other social behavior.  相似文献   

15.
The effect on avoidance and exploratory behavior of large doses of sexual steroids or of changes in ovarian steroid secretion induced by gonadotropin treatment or androgen sterilization was studied in female R-Amsterdam rats. Estrogen, progesterone, testosterone, androgen sterilization, and human chorionic gonadotropin (HCG) effects were tested and evaluated. Estrogen in castrated female rats delayed extinction of the conditioned avoidance response from Day 8 of extinction and increased intertrial activity during extinction. Estrogen treatment applied from extinction was ineffective. Progesterone treatment of castrated female rats applied from the first days of conditioning delayed extinction from Day 12. If the treatment was begun at extinction, this was delayed after Day 8. Intertrial activity was also higher between Day 8 and Day 15 of extinction. Testosterone treatment of castrated male rats increased intertrial activity during acquisition. In the animals treated from extinction, a delay was observed from Day 9, and intertrial activity was increased simultaneously. In androgen-sterilized female rats, extinction was facilitated. HCG treatment of intact female rats delayed the extinction. The steroids used failed to affect the exploratory activity of castrated rats, indicating that, under the conditions tested, general activity and exploratory activity are not motivated by the same mechanism.  相似文献   

16.
《Hormones and behavior》2007,51(5):772-778
Zebra finches, like many other animals, have close social relationships mainly with the family at young ages but begin to express interest in opposite-sex extra-family animals as they enter the late juvenile period and sexual maturity. This experiment tested a set of hypotheses that sex steroids are involved in this developmental transition. At 25–30 days, subjects were implanted subcutaneously with Silastic tubes that were empty (controls), filled with testosterone propionate, filled with estradiol benzoate, or filled with a combination of ATD (an aromatization inhibitor) and flutamide (an anti-androgen). Once a week between ages 30 and 90 days, they were given three-choice tests where the three stimulus types were the family members, unpaired males, or unpaired females. The preferred category was defined as the one adjacent to the proximity zone in which the subject spent the most time. Control males were more likely to prefer females and less likely to prefer the family as they got older, and control females were increasingly likely to prefer males. Males treated with testosterone or estradiol showed a premature increase in preferences for females. Females treated with ATD plus flutamide failed to show the normal increase in preferences for males shown by controls. These results indicate an involvement of sex steroids in the maturation of sexual preferences in a socially monogamous species that relies on visual and auditory, rather than olfactory, cues for sexual or other social behavior.  相似文献   

17.
Effects of filipin and steroids on phytochrome pelletability   总被引:1,自引:1,他引:0       下载免费PDF全文
Red light given to dark-grown etiolated leaves of Hordeum vulgare L. in vivo or to crude homogenates increases the phytochrome content of the 20,000 g pellet on centrifugation. The steroids cholesterol and stigmasterol inhibit this red light-induced phytochrome pelletability. Filipin (a polyene antibiotic, which is known to combine with steroids) inhibits red light-induced phytochrome pelletability. Filipin and steroids at the appropriate concentration applied together prevent the inhibition caused by either when applied alone. These results suggest that phytochrome may bind to a steroid component of membranes. The phospholipid phosphatidyl choline dipalmitoyl has no effect on red light-induced phytochrome pelletability. Preliminary evidence demonstrates a direct association of soluble phytochrome in its active form and steroids. The physiological significance of red light-induced pelletability and the primary mechanism of phytochrome action are discussed in terms of a hypothetical steroid-binding site.  相似文献   

18.
Various hormones, including sex steroids and neuropeptides, have been implicated in aggression. In this study we examined (1) sex differences in intrasexual aggression in na?ve prairie voles; (2) the effects of developmental manipulations of oxytocin on intrasexual aggression; and (3) changes in patterns of intrasexual aggression after brief exposure to an animal of the opposite sex. Within 24 h of birth, infants were randomly assigned to receive either an injection of oxytocin (OT) or oxytocin antagonist (OTA) or to one of two control (CTL) groups receiving either isotonic saline or handling without injection. As adults, animals were tested twice in a neutral arena; before (Test 1) and 24 h after (Test 2) a 4-h exposure to an animal of the opposite sex. In Test 1, CTL males were more likely to show aggressive and less likely to show social behavior than CTL females. No significant treatment differences were observed within either sex in Test 1. In Test 2, after brief exposure to a male, females treated with OT became more aggressive and less social than OTA or CTL females. Male aggressive behavior did not change after exposure to a female. An increase in aggression and decline in social behavior toward other females, seen here in OT-treated females, is typically observed only following several days of female-male cohabitation. These findings demonstrate a sex difference in intrasexual aggression and suggest that neonatal exposure to OT may facilitate the onset of the mate-guarding component of pair bonding in female prairie voles.  相似文献   

19.
Evo-devo and the evolution of social behavior   总被引:4,自引:0,他引:4  
The integration of evolutionary biology with developmental genetics into the hybrid field of 'evo-devo' resulted in major advances in understanding multicellular development and morphological evolution. Here we show how insights from evo-devo can be applied to study the evolution of social behavior. We develop this idea by reviewing studies that suggest that molecular pathways controlling feeding behavior and reproduction in solitary insects are part of a 'genetic toolkit' underlying the evolution of a particularly complex form of social behavior, division of labor among workers in honeybee colonies. The evo-devo approach, coupled with advances in genomics for non-model genetic organisms, including the recent sequencing of the honeybee genome, promises to advance our understanding of the evolution of social behavior.  相似文献   

20.
Early workers interested in the mechanisms mediating sex differences in morphology and behavior assumed that differences in behavior that are commonly observed between males and females result from the sex specificity of androgens and estrogens. Androgens were thought to facilitate male-typical traits, and estrogens were thought to facilitate female-typical traits. By the mid-20th century, however, it was apparent that administering androgens to females or estrogens to males was not always effective in sex-reversing behavior and that in some cases a “female” hormone such as an estrogen could produce male-typical behavior and an androgen could induce female-typical behavior. These conceptual difficulties were resolved to a large extent by the seminal paper of C. H. Phoenix, R. W. Goy, A. A. Gerall, and W. C. Young in (1959,Endocrinology65, 369–382) that illustrated that several aspects of sexual behavior are different between males and females because the sexes have been exposed during their perinatal life to a different endocrine milieu that has irreversibly modified their response to steroids in adulthood. Phoenixet al.(1959) therefore formalized a clear dichotomy between the organizational and activational effects of sex steroid hormones. Since this paper, a substantial amount of research has been carried out in an attempt to identify the aspects of brain morphology or neurochemistry that differentiate under the embryonic/neonatal effects of steroids and are responsible for the different behavioral response of males and females to the activation by steroids in adulthood. During the past 25 years, research in behavioral neuroendocrinology has identified many sex differences in brain morphology or neurochemistry; however many of these sex differences disappear when male and female subjects are placed in similar endocrine conditions (e.g., are gonadectomized and treated with the same amount of steroids) so that these differences appear to be of an activational nature and cannot therefore explain sex differences in behavior that are still present in gonadectomized steroid-treated adults. This research has also revealed many aspects of brain morphology and chemistry that are markedly affected by steroids in adulthood and are thought to mediate the activation of behavior at the central level. It has been explicitly, or in some cases, implicitly assumed that the sexual differentiation of brain and behavior driven by early exposure to steroids concerns primarily those neuroanatomical/neurochemical characteristics that are altered by steroids in adulthood and presumably mediate the activation of behavior. Extensive efforts to identify these sexually differentiated brain characteristics over the past 20 years has only met with limited success, however. As regards reproductive behavior, in all model species that have been studied it is still impossible to identify satisfactorily brain characteristics that differentiate under early steroid action and explain the sex differences in behavioral activating effects of steroids. This problem is illustrated by research conducted on Japanese quail (Coturnix japonica), an avian model system that displays prominent sex differences in the sexual behavioral response to testosterone, and in which the endocrine mechanisms that control sexual differentiation of behavior have been clearly identified so that subjects with a fully sex-reversed behavioral phenotype can be easily produced. In this species, studies of sex differences in the neural substrate mediating the action of steroids in the brain, including the activity of the enzymes that metabolize steroids such as aromatase and the distribution of steroid hormone receptors as well as related neurotransmitter systems, did not result in a satisfactory explanation of sex differences in the behavioral effectiveness of testosterone. Possible explanations for the relative failure to identify the organized brain characteristics responsible for behavioral sex differences in the responsiveness to steroids are presented. It is argued that novel research strategies may have to be employed to successfully attack the fundamental question of the hormonal mechanisms regulating sex differences in behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号