首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Excretion of cholate glucuronide   总被引:1,自引:0,他引:1  
[3-3H]Cholic acid glucuronide [7 alpha,12 alpha-dihydroxy-3 alpha-O-(beta-D-glucopyranosyluronate)-5 beta- cholan-24-oate] was synthesized and administered to rats prepared with either an external biliary fistula or a ligated bile duct. When bile fistula animals were given either microgram or milligram amounts of the glucuronide, biliary secretion of label was rapid and efficient: greater than 90% of the administered label was secreted within 60 min and total recovery of label in bile was 98.6 +/- 1.2%. Studies in which [14C]taurocholate was included in the dose indicated that this bile acid was secreted into bile significantly more rapidly than was the glucuronide. In animals with ligated bile ducts, urinary excretion was the major route of elimination: after 20 hr, 83.4 +/- 9.3% of the administered dose had been excreted in urine. Urinary excretion of cholate glucuronide was significantly more rapid than that of taurocholate. Gas-liquid chromatographic analysis of the methyl ester acetate derivatives of labeled compounds isolated from bile and urine by chromatography established that the bulk (greater than 70%) of the administered material was secreted in bile or excreted in urine as the intact cholate glucuronide. From these results, we conclude that the glucuronidation of cholic acid produces a derivative which is rapidly and effectively cleared from the circulation and excreted.  相似文献   

2.
The stereospecificity of mechanisms for hepatic transport of short-chain bile acids has been examined by following the hepatic metabolism and biliary secretion of 3 beta-hydroxy-5 beta-androstane-17 beta-carboxylic acid (isoetianic acid) administered in two different labeled forms to rats prepared with an external biliary fistula. While 93% of the administered [2,2,4,4-3H]isoetianic acid was recovered in bile after 20 h, only 18% of a similar dose of [3 alpha-3H]isoetianic acid was secreted in bile over the same time period. The recovered radioactivity of the latter compound was mainly associated with bile water. With the [2,2,4,4-3H]isoetianic acid, the bulk of the biliary isotope was determined to be in the form of two glucuronide conjugates. Spectral analysis identified these metabolites as the hydroxyl-linked (major) and carboxyl-linked (minor) beta-glucuronides, not of the 3 beta-hydroxy compound administered, but of 3 alpha-hydroxy-5 beta-androstane-17 beta-carboxylic acid (etianic acid), i.e., the products of hydroxyl group inversion. It is concluded that isoetianic acid is efficiently cleared from plasma and conjugated with glucuronic acid after its epimerization to etianic acid. The prevalent, but not complete, loss of the 3-tritium atom and the retention of the 2- and 4-tritium atoms probably indicates a 3-oxo-5 beta-androstane-17 beta-carboxylic acid intermediate with partial return of the label via a limited labeled pool of reduced nicotinamide cofactor.  相似文献   

3.
Microsomal preparations from livers of Sprague-Dawley rats catalyze the glucuronidation of 3 alpha-hydroxy-5 beta-H (3 alpha, 5 beta) short-chain bile acids (C20-C23), predominantly at the hydroxyl group, while the glucuronidation of 3 beta, 5 beta short-chain bile acids occurs exclusively at the carboxyl group. A similar pattern of conjugation was also observed in Wistar rats having normal levels of 3-hydroxysteroid UDP-glucuronosyltransferase. Significant reductions of formation rates for hydroxyl-linked, but not carboxyl-linked, short-chain bile acid glucuronides were observed in hepatic microsomes from Wistar rats with low 3-hydroxysteroid UDP-glucuronosyltransferase activity. 3-Hydroxysteroid UDP-glucuronosyltransferase, purified to homogeneity from Sprague-Dawley liver microsomes, catalyzed the 3-O-glucuronidation of 3 alpha, 5 beta C20-23 bile acids, as well as of lithocholic and isolithocholic acids (C24). The apparent Michaelis constants (KM) for short-chain bile acids were similar to the value obtained for androsterone. 3 alpha, 5 beta-C20 and 3 beta, 5 beta-C20 competitively inhibited glucuronidation of androsterone by the purified 3-hydroxysteroid UDP-glucuronosyltransferase. Purified 17 beta-hydroxysteroid and p-nitrophenol UDP-glucuronosyltransferases did not catalyze the glucuronidation of bile acids. In addition, none of the purified transferases catalyzed the formation of carboxyl-linked bile acid glucuronides. The results show that 3-hydroxysteroid UDP-glucuronosyltransferase, an enzyme specific for 3-hydroxyl groups of androgenic steroids and some conventional bile acids, also catalyzes the glucuronidation of 3 alpha-hydroxyl (but not carboxyl) groups of 3 alpha, 5 beta short-chain bile acids.  相似文献   

4.
Milligram amounts of [3 beta-3H]lithocholic (3 alpha-hydroxy-5 beta-cholanoic) acid were administered by intravenous infusion to rats prepared with a biliary fistula. Analysis of sequential bile samples by thin-layer chromatography (TLC) demonstrated that lithocholic acid glucuronide was present in bile throughout the course of the experiments and that its secretion rate paralleled that of total isotope secretion. Initial confirmation of the identity of this metabolite was obtained by the recovery of labeled lithocholic acid after beta-glucuronidase hydrolysis of bile samples. For detailed analysis of biliary metabolites of [3H]lithocholic acid, pooled bile samples from infused rats were subjected to reversed-phase chromatography and four major labeled peaks were isolated. After complete deconjugation, the two major compounds in the combined first two peaks were identified as murideoxycholic (3 alpha, 6 beta-dihydroxy-5 beta-cholanoic) and beta-muricholic (3 alpha, 6 beta, 7 beta-trihydroxy-5 beta-cholanoic) acids and the third peak was identified as taurolithocholic acid. The major component of the fourth peak, after isolation, derivatization (to the methyl ester acetate), and purification by high pressure liquid chromatography (HPLC), was positively identified by proton nuclear magnetic resonance as lithocholic acid 3 alpha-O-(beta-D-glucuronide). These studies have shown, for the first time, that lithocholic acid glucuronide is a product of in vivo hepatic metabolism of lithocholic acid in the rat.  相似文献   

5.
Mano N  Nishimura K  Narui T  Ikegawa S  Goto J 《Steroids》2002,67(3-4):257-262
Recent studies have suggested that bile acid acyl glucuronides form covalently bound protein adducts which may cause hypersensitivity reactions and increased morbidity in patients. Although the preferential biosynthesis of the acyl glucuronides has been known, the characterization of hepatic bile acid acyl glucuronosyltransferase has not yet been clearly elucidated. We have investigated the substrate specificity of the hepatic bile acid acyl glucuronosyltransferase using five common bile acids as substrates. The glucuronidation rate was dependent on the number of the hydroxy group on the steroid nucleus and mono-hydroxylated lithocholic acid, the more lipophilic common bile acid, was most effectively metabolized into its acyl glucuronide. The tri-hydroxylated cholic acid, the more water-soluble common bile acid, barely transformed into its glucuronide. Results showed decreasing of the initial velocity of the acyl glucuronidation with increasing of the concentration of substrate, lithocholic acid, owing to the substrate inhibition of the hepatic bile acid acyl glucuronosyltransferase. The substrate analogues, glycine and taurine conjugated bile acids, which exist in the body fluids in high concentrations, also inhibited the enzyme's activity. In addition, enzymatic reaction products, bile acid acyl glucuronides, also inhibited the activity. These inhibitory mechanisms may be responsible for the low concentration of bile acid acyl glucuronides in urine and may be an important detoxification system in the body.  相似文献   

6.
The ability of rat liver microsomes to catalyze UDP-glucuronic acid-dependent glucuronidation of monohydroxy-bile acids was examined. The following bile acids were used as substrates, each as the 3 alpha and 3 beta epimer: 3-hydroxy-5 beta-cholanoic acid (C24), 3-hydroxy-5 beta-norcholanoic acid (C23), 3-hydroxy-5 beta-bisnorcholanoic acid (C22), 3-hydroxy-5 beta-pregnan-21-oic acid (C21), and 3-hydroxy-5 beta-androstane-17 beta-carboxylic acid (C20). The corresponding glucuronides were chemically synthesized to serve as standards and were characterized by thin-layer and gas-liquid chromatography as well as by nuclear magnetic resonance. Enzymatic glucuronidation reactions were optimized with respect to pH for each product formed and the kinetic parameters for each reaction were measured. Analytical techniques necessary to separate products from unreacted substrates and to identify them included thin-layer chromatography, gas-liquid chromatography, and nuclear magnetic resonance. It was found that the 3 alpha epimers of the five bile acids listed above enzymatically formed 3-O-glucuronides, C24 being the best substrate, followed by C21 and C20; C22 and C23 gave rise to only small amounts of this product. The 3 beta epimers of all bile acids tested were poorer substrates, although by a factor that varied widely. In addition to the expected hydroxyl-linked glucuronide, three of the 3 alpha-bile acids (C23, C22, and C20) and at least one 3 beta-bile acid (C20), gave rise to a novel metabolite in which the 1-OH of glucuronic acid was esterified with the steroidal carboxyl group (carboxyl-linked glucuronide).  相似文献   

7.
It has been shown that lithocholic glucuronide is more cholestatic than lithocholic acid (LCA), as well as its taurine and glycine conjugates. Furthermore, LCA hydroxylation is thought to be a major detoxifying mechanism. Therefore, the role of LCA glucuronidation and hydroxylation was investigated during the development of LCA-induced cholestasis and recovery from it. Male rats received a bolus intravenous injection of [14C]LCA (12 mumol/100 g body weight) and bile samples were collected every 30 min for 5 h. Bile flow (BF) was reduced immediately after LCA injection, dropping to 40% of basal BF at 60 min. It then started to increase, reaching normal bile flow values at 3.5 h. Morphologically, canalicular lesions were dominant at 60 min and virtually absent at 2 h. At 60 min (maximal cholestasis), 30% of the LCA injected was secreted in bile, 20% was found in plasma while the other 50% was recovered in the liver and distributed mainly in plasma membranes, microsomes and cytosol. At the end of the experiment (normal BF), 20% of the LCA injected was still in the liver but was present mainly in the cytosol. In bile, within 30 min after injection, 46% of the LCA secreted was lithocholic glucuronide, 24% was conjugated with taurine and glycine, and 21% was in the form of hydroxylated bile acids. During the recovery period, lithocholic glucuronide secretion decreased to 18-25%. Taurine and glycine conjugate secretion increased to a maximum of 43% at 60 min, after which it was reduced to 21-28%. In contrast, hydroxylated metabolites were elevated during the recovery periods, reaching a maximum (45%) at 120 min and remaining constant thereafter. These results suggest that: (i) LCA binding to plasma membranes and microsomes appeared to correlate with the development of cholestasis; (ii) LCA glucuronidation may initiate and/or contribute to LCA-induced cholestasis; and (iii) hydroxylation predominates during recovery from cholestasis.  相似文献   

8.
A method is reported for the preparation of the C-24 carboxyl-linked beta-D-galactopyranosides of lithocholic, deoxycholic, chenodeoxycholic, ursodeoxycholic, and cholic acids, two of which were recently identified as a novel type of the metabolites of bile acids excreted in human urine. Direct esterification (galactosidation) of the unprotected bile acids with 2,3,4,6-tetra-O-benzyl-D-galactopyranose in the presence of 2-chloro-1,3,5-trinitrobenzene as a coupling agent and subsequent hydrogenolysis of the resulting benzyloxy-protected bile acid 24-beta-D-galactopyranosides over 10% palladium on charcoal under atmospheric pressure afforded the title compounds. The structures of the bile acid acyl galactosides were confirmed by measuring several (1)H-(1)H and (1)H-(13)C shift correlated 2D NMR.  相似文献   

9.
The glucuronidation of 6-hydroxylated bile acids by rat liver microsomes was studied in vitro; for comparison, several major bile acids lacking a hydroxyl group in position 6 were also investigated. The highest reaction rates were found for lithocholic and deoxycholic acid (10.2 +/- 0.2 and 7.3 +/- 1.4 nmol/mg.min, respectively); our results for these substrates agree well with published values. Glucuronidation rates for the 6 beta-hydroxylated bile acids 3 alpha, 6 beta-dihydroxy-5 beta-cholanoate (murideoxycholate) and 3 alpha, 6 beta, 7 beta-trihydroxy-5 beta-cholanoate (beta-muricholate) were only slightly lower (3.7 +/- 0.3 and 3.6 +/- 0.3 nmol/mg.min). 6 alpha-Hydroxylated bile acids were glucuronidated at rates that were lower than those for their 6 beta-hydroxy counterparts. Rigorous product identification by high-field proton NMR of methyl/acetyl derivatives revealed that while bile acids lacking a 6-hydroxyl group gave rise exclusively to the typical 3-O-glucuronide, the presence of a hydroxyl group in position 6 led to the formation, in ratios depending on the substrate, of three types of conjugate: the 3-O-, the 6-O-, and the carboxyl-linked (acyl-) glucurnide. The latter is the first example of an acyl glucuronide of a bile acid of conventional (C24) size.  相似文献   

10.
The population levels of intestinal microflora and bile acid composition in the digestive tract were examined in rats fed bile acids to determine the relationships between gastrointestinal microflora and the host. The population level of Bacteroides was increased in the ceca of rats fed cholic acid or deoxycholic acid. In the ileum, the concentration of conjugated bile acid in rats fed cholesterol, cholic acid, hyodeoxycholic acid or lithocholic acid was higher than that in control rats, and was very low in ceca and feces of all the rats. The concentration of total free bile acid was much higher in the ceca than in the ilea of rats fed hyodeoxycholic acid or lithocholic acid. Cholic acid and deoxycholic acid were found in the ilea, ceca and feces of the cholic acid-fed rats. In the deoxycholic acid-fed rats, cholic acid was localized in the ileum. 7-Ketodeoxycholic acid was also found in the ceca of the cholic acid-fed rats. 12-Ketolithocholic acid was found in the feces of rats fed cholic acid or deoxycholic acid. 3-Ketocholanic acid was found in some samples from the lithocholic acid-fed rats. Therefore, some kinds of bile acids influence the population levels of gastrointestinal microflora and bile acid composition in the intestine.  相似文献   

11.
To determine if the conversion of the intermediate, 3α, 7α, 12α-trihydroxy-5β-cholestan-26-oic acid (THCA), into cholic acid is influenced by taurocholate, two rats were infused intravenously with [3H] THCA until they reached a steady state. Taurocholate was then added and infused at a rate of 1 μmole/min/rat for 48 hours. The percentage of [3H] THCA recovered in the bile did not increase indicating that taurocholate does not suppress the conversion of THCA into cholic acid.  相似文献   

12.
Biliary excretion and biotransformation of tracer doses of [14C]lithocholic acid and its sulfate and glucuronide intravenously injected into bile-drainaged rats were compared. Biliary excretion efficiency was in the order of unconjugate sulfate glucuronide and all conjugates were completely excreted into bile within 60 min after injection. Only tracer doses of radioactivity were found in the liver and urine. About 90% of radiolabeled bile acids in bile were conjugated with taurine immediately after injection of lithocholic acid, whereas lithocholic acid-glucuronide was only partly conjugated with taurine all the time (less than 6%) and excreted into bile mainly as native compound. In the first 10 min, 66% of lithocholic acid-sulfate was conjugated with taurine and it gradually proceeded up to 87%. Hydroxylation at C-6 and C-7 positions of lithocholic acid proceeded time-dependently up to 45%. No hydroxylation was observed with lithocholic acid-sulfate or glucuronide. Differences of biliary excretion rate of these conjugates may be one of the reasons for the delayed decrease of sulfated and glucuronidated bile acids in serum after bile drainage to patients with obstructive jaundice of during the recovery of acute hepatitis than non-esterified bile acids.  相似文献   

13.
Biliary secretion of the cholesteryl ester moiety of (modified) low-density lipoprotein (LDL) was examined under various experimental conditions in the rat. Human LDL or acetylated LDL (acetyl-LDL), radiolabelled with [3H]cholesteryl oleate, was administered intravenously to unanesthetized rats equipped with permanent catheters in the bile duct, duodenum and heart. LDL was cleared relatively slowly from plasma, mainly by Kupffer cells. At 3 h after injection, only 0.9% of the radioactivity was found in bile; after 12 h this value was 4.5%. Uptake of LDL by hepatocytes was stimulated by treatment of the rats with 17 alpha-ethinyloestradiol (EE; 5 mg/kg for 3 successive days); this resulted in a more rapid secretion of radioactivity into bile, 3.9% and 12.4% after 3 h and 12 h respectively. The extremely rapid uptake of acetyl-LDL via the scavenger pathway, mainly by endothelial cells, resulted in the secretion of only 2.1% of its 3H label into bile within 3 h, and 9.5% within 12 h. Radioactivity in bile was predominantly in the form of bile acids; only a small part was secreted as free cholesterol. However, the specific radioactivity of biliary cholesterol was higher than that of bile acids in all three experimental conditions. EE-treated animals did not form cholic acid from [3H]cholesteryl oleate, which was a major product of the cholesteryl oleate from LDL and acetyl-LDL in untreated rats, but formed predominantly very polar bile acids, i.e. muricholic acids. It is concluded that uptake of human LDL or acetyl-LDL by the liver of untreated rats is not efficiently coupled to biliary secretion of cholesterol (bile acids). This might be due to the anatomical localization of their principal uptake sites, the Kupffer cells and the endothelial cells respectively. Induction of LDL uptake by hepatocytes by EE treatment warrants a more efficient disposition of cholesterol from the body via bile.  相似文献   

14.
The hepatic metabolism of 3-oxoandrost-4-ene-17 beta-carboxylic acid (etienic acid), a probable acidic catabolite of deoxycorticosterone, was investigated using rats prepared with an external biliary fistula. Metabolic products were identified by GC-MS after hydrolysis with beta-glucuronidase and by proton nuclear magnetic resonance after chromatographic purification of protected glucuronides. About 80% of the injected dose was secreted into bile in 20 hours. Three fully reduced etianic acids (3 alpha-hydroxy-5 alpha-, 3 beta-hydroxy-5 alpha-, 3 alpha-hydroxy-5 beta-androstan-17 beta-carboxylic acids) were identified as were several of their di- and trihydroxylated congeners. Glucuronides of these reduced and/or hydroxylated metabolites constituted over half of the recovered dose, with carboxyl-linked glucuronides predominating over 3-hydroxyl-linked glucuronides. The mode of glucuronidation correlated well with the ability of liver microsomes to form the corresponding compounds in vitro from the set of four 3,5-diastereomeric etianic acids.  相似文献   

15.
Bile acid synthesis: down-regulation by monohydroxy bile acids   总被引:3,自引:0,他引:3  
R Hall  E Kok  N B Javitt 《FASEB journal》1988,2(2):152-156
The regulation of bile acid synthesis was studied in rabbits after interruption of the enterohepatic circulation by choledochoureteral anastomosis. Total daily bile acid output was 772 +/- 130 (SD) mumol/24 h, of which greater than 95% was glycocholic acid. Administration of deoxycholic or cholic acid or their conjugates (300-800 mumol) or gall-bladder bile failed to down-regulate endogenous bile acid synthesis. In contrast, chenodeoxycholic acid administration did down-regulate bile acid synthesis, but this effect was related to the formation and excretion of lithocholic acid. This observation was confirmed by the finding that i.v. infusion of 10-20 mumol of either lithocholic acid or 3 beta-hydroxy-5-cholenoic acid significantly reduced cholic acid synthesis. Thus monohydroxy bile acids, derived from either hepatic or intestinal sources, participate in the down-regulation of bile acid synthesis.  相似文献   

16.
Glycolithocholic acid and its sulfated derivative are major metabolites of the secondary bile acid lithocholic acid in man. Both compounds are known to induce cholestasis in experimental animals. We compared the effects of these endogenous hepatotoxins on bile production and biliary lipid composition in rats with chronic biliary drainage. The compounds were administered enterally at relatively low rates (5-50% of the rats' endogenous bile acid secretion in these experiments) to simulate enterohepatic circulation. Both compounds were substantially secreted into bile (more than 90% of dose); sulfated glycolithocholic acid unchanged and glycolithocholic acid after hepatic hydroxylation predominantly in the form of glyco-beta-muricholic acid (cf. Kuipers et al. (1986) Am. J. Physiol. 251, G189-G194). Neither glycolithocholic acid nor its sulfated derivative affected the biliary excretion of endogenous bile acids or bile flow in these experiments. In spite of this, phospholipid and cholesterol secretion were significantly reduced by sulfated glycolithocholic acid but were not altered by glycolithocholic acid. Phospholipid and cholesterol secretion rapidly decreased to 25 and 50% of their initial values, respectively, at biliary output rates of sulfated glycolithocholic acid up to 2 mumol/h, and did not further decrease when this output was increased to 6 mumol/h. Small unilamellar liposomes consisting of cholesterol, [Me-14C]choline-labeled phosphatidylcholine, phosphatidylserine and [3H]cholesteryl oleate in a 5:4:1:0.1 molar ratio were employed to label intrahepatic lipid pools. Administration of sulfated glycolithocholic acid slightly reduced bile acid synthesis from [3H]cholesteryl oleate, but significantly reduced the biliary secretion of [14C]phospholipid. Glycolithocholic acid did not affect the hepatic processing of liposomal lipids. It is concluded that sulfated glycolithocholic acid at low doses causes the uncoupling of biliary lipid secretion from that of bile acids, which might represent in initiating event in sulfated glycolithocholic acid hepatotoxicity.  相似文献   

17.
Perfusion of an isolated rat kidney with labelled bile acids, in a protein-free medium, resulted in the urinary excretion of the labelled bile acid, 3% being converted into polar metabolities in 1h. These metabolities were neither glycine nor taurine conjugates, nor bile acid glucuronides, and on solovolysis yielded the free bile acid. On t.l.c. the metabolite of [24-14C]lithocholic acid had the mobility of lithocholate 3-sulphate. The principal metabolite of [24-14C]chenodeoxycholic acid had the mobility of chenodeoxycholate 7-sulphate; trace amounts appeared as chenodeoxycholate 3-sulphate. [35S]sulphate was incorporated in chenodeoxycholic acid by the kidney, resulting in a similar pattern of sulphation. No disulphate salt of chenodeoxycholic acid was detected. These findings lend support to the hypothesis that renal synthesis may account for some of the bile acid sulphates present in urine in the cholestatic syndrome in man.  相似文献   

18.
We recently reported that tyrosine-conjugated bile acids, when injected intravenously into bile-fistula rats, are extracted by the liver and secreted intact into bile with an efficiency similar to that seen for taurocholate. Now the effect of tyrosine and glycyltyrosine conjugation of bile acids on ileal absorption has been studied in Wistar rats. 125I-labelled tyrosine- and glycyltyrosine-conjugated bile acid or [14C]taurocholate was injected in 400 microliters aliquots of physiological saline buffered to pH 7.8 into the ileal lumen of bile-fistula rats. Recovery of bile salts in bile was taken as proof of ileal absorption. In comparison with taurocholate, ileal absorption was about 10% less for cholyltyrosine and chenodeoxycholyltyrosine and about 50% less for deoxycholyltyrosine. Thus, tyrosine-conjugated bile acids are absorbed by the ileum and excreted into bile and may undergo enterohepatic circulation. Low recoveries of deoxycholyltyrosine relative to deoxycholylglycine suggested that side chain structure was important for ileal absorption of 3 alpha,12 alpha-dihydroxy bile acids. Elongation of cholic acid to form cholylglycyltyrosine markedly reduced 90-min cumulative ileal absorption relative to cholyltyrosine. Although initial rates of recovery of cholylglycyltyrosine were comparable to those of the other bile acids, very little further absorption was seen in the last hour of the experiment, suggesting that this compound was rapidly degraded within the intestinal lumen.  相似文献   

19.
Rabbit hepatocytes isolated after liver perfusion with collagenase were maintained in primary monolayer culture for periods up to 96 h. Bile acid synthesis and secretion was measured by capillary gas-liquid chromatography and by a rapid enzymatic-bioluminescence assay. As expected from the bile acid profile of rabbit gallbladder bile, cholic acid was the only bile acid synthesized in detectable amounts and was produced at a linear rate of 170 pmol/h per mg cell protein from 24 to 96 h in culture. Ketoconazole (20 microM) inhibited cholic acid synthesis and secretion by 78%, whereas the bile acids chenodeoxycholic acid (100 microM), deoxycholic acid (100 microM) or lithocholic acid (2 microM) had no effect. When rat hepatocytes were cultured under identical conditions, the rate of bile acid synthesis was found to be only 12 pmol/h per mg cell protein, a value in agreement with previous work. The large difference in rates of bile acid synthesis between rabbit and rat hepatocytes may be due to rapid loss of cytochrome P-450 from rat hepatocytes when placed in monolayer culture. Although reportedly active in cholesterol 7 alpha-hydroxylation, form 4 cytochrome P-450 levels in rabbit hepatocytes did not correlate with rates of bile acid synthesis.  相似文献   

20.
Hydroxylation of lithocholic, chenodeoxycholic, deoxycholic and cholic acids was studied in monolayers of rat hepatocytes cultured for 76 h. The majority of added lithocholic and chenodeoxycholic acids was metabolized to beta-muricholic acid (56-76%). A small part of these bile acids (9%), however, and a considerable amount of deoxycholic and cholic acids (21%) were converted into metabolites more polar than cholic acid in the first culture period. Formation of these compounds decreased during the last day of culture. Bile acids synthesized after addition of [4-14C]-cholesterol were almost entirely (97%) sulfated and/or conjugated, predominantly with taurine (54-66%), during culture. Sulfated bile acids were mainly composed of free bile acids. The ability of hepatocytes to sulfurylate bile acids declined with culture age. Thus, rat hepatocytes in primary monolayer culture are capable to sulfurylate bile acids and to hydroxylate trihydroxylated bile acids, suggesting formation of polyhydroxylated metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号