共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary 1. Pigmentation inTrichophyton rubrum appears to be dependent upon tyrosine and phenylalanine (as precursors), carbohydrate (primarily as an energy source), and oxygen.2. Cysteine and methionine inhibit the growth ofT. rubrum in a minimal medium. L-sorbose also inhibits the growth of this organism, even in a complete medium.3.T. rubrum apparently synthesizes all of the vitamins required for growth and pigmentation.4. At certain concentrations of ascorbic acid, it is possible to distinguish between the pigmentogenic and growth processes ofT. rubrum.5. Sunlight suppresses growth and pigmentation inT. rubrum. 相似文献
2.
3.
1. Fatty acid formation by cells of a strain of Escherichia coli has been studied in the exponential, post-exponential and stationary phases of growth. 2. During the exponential phase of growth, the metabolic quotient (mmumoles of fatty acid synthesized/mg. dry wt. of cells/hr.) for each fatty acid in the extractable lipid was constant. 3. The newly synthesized fatty acid mixtures produced during this phase contained hexadecanoic acid (41%), hexadecenoic acid (31%), octadecenoic acid (21%) and the C(17)-cyclopropane acid, methylenehexadecanoic acid (4%). 4. As the proportion of newly synthesized material increased, changes in the fatty acid composition of the cells during this period were towards this constant composition. 5. Abrupt changes in fatty acid synthesis occurred when exponential growth ceased. 6. In media in which glycerol, or SO(4) (2-) or Mg(2+), was growth-limiting there was a small accumulation of C(17)-cyclopropane acid in cells growing in the post-exponential phase of growth. 7. Where either NH(4) (+) or PO(4) (3-) was growth-limiting and there were adequate supplies of glycerol, Mg(2+) and SO(4) (2-), there was a marked accumulation of C(17)-cyclopropane acid and C(19)-cyclopropane acid appeared. 8. Under appropriate conditions the metabolic quotient for C(17)-cyclopropane acid increased up to sevenfold at the end of exponential growth. Simultaneously the metabolic quotients of the other acids fell. 9. A mixture of glycerol, Mg(2+) and SO(4) (2-) stimulated cyclopropane acid formation in resting cells. 相似文献
4.
Dipak K. Das 《Biochemical and biophysical research communications》1980,92(3):867-875
De novo fatty acid synthesis in lung is significant during fetal growth and development. Specific activity and relative rate of synthesis of fatty acid synthetase increase with the days of gestational age and drop significantly after birth. Fetal lungs contain thyroid hormone receptors and binding capacities of this hormone to the fetal lungs also increase with the days of gestational age. Our results suggest that de novo fatty acid synthesis in fetal lungs may make a significant contribution towards surfactant synthesis. 相似文献
5.
Fatty acid synthesis in developing mouse liver 总被引:3,自引:0,他引:3
6.
All eukaryotic and prokaryotic organisms are thought to synthesize fatty acids using a type I or type II synthase. In addition, eukaryotes extend pre-existing long chain fatty acids using microsomal elongases (ELOs). We have found that Trypanosoma brucei, a eukaryotic human parasite that causes sleeping sickness, uses three elongases instead of type I or type II synthases for the synthesis of nearly all its fatty acids. Trypanosomes encounter diverse environments during their life cycle with different fatty acid requirements. The tsetse vector form requires synthesis of stearate (C18), whereas the bloodstream form needs myristate (C14). We find that trypanosome fatty acid synthesis is modular, with ELO1 converting C4 to C10, ELO2 extending C10 to C14, and ELO3 elongating C14 to C18. In blood, ELO3 downregulation favors myristate synthesis, whereas low concentrations of exogenous fatty acids in cultured parasites cause upregulation of the entire pathway, allowing the parasite to adapt to different environments. 相似文献
7.
Synthesis of fatty acids has been studied in aged potato slices. Formation of the very long chain fatty acids was inhibited by the presence of fluoride or by high incubation temperatures. Arsenite caused an increase in the percentage incorporation of radioactivity from acetate-[14C] into palmitic acid, apparently by inhibiting further elongation. The results indicate that the aged potato contains at least three enzymes responsible for saturated fatty acid synthesis, At short incubation times, the newly formed fatty acids were mainly unesterified but later become incorporated into phospholipids. Phosphatidylcholine contained the greatest proportion of radioactive fatty acids. Newly formed polyenoic fatty acids were principally transacylated into phosphatidylcholine and phosphatidylethanolamines. The very long chain fatty acids, on the other hand, were mainly located in the wax ester and unesterified fatty acid fractions, from which they can easily be converted into suberin components. 相似文献
8.
9.
Fatty acids are essential compounds in the cell. Since the yeast Saccharomyces cerevisiae does not feed typically on fatty acids, cellular function and growth relies on endogenous synthesis. Since all cellular organelles are involved in--or dependent on--fatty acid synthesis, multiple levels of control may exist to ensure proper fatty acid composition and homeostasis. In this review, we summarize what is currently known about enzymes involved in cellular fatty acid synthesis and elongation, and discuss potential links between fatty acid metabolism, physiology and cellular regulation. 相似文献
10.
Fatty acid synthesis in human adipose tissue 总被引:6,自引:0,他引:6
11.
Urease activity was detected in the dermatophyteTrichophyton mentagrophytes cells at early exponential phase of growth. Specific activity of urease decreased with culture age. At exogenous urea concentrations
above 2 mm formation of urease was inhibited. The pH optimum lay at 7–7.5, the Km being 14 mm. No urease activity could be detected in cell-free culture fluid ofT. mentagrophytes. No endoor exocellular urease activity could be detected in aT. rubrum strain grown with or without urea. 相似文献
12.
Fatty acid synthesis in mitochondria of Euglena gracilis 总被引:2,自引:0,他引:2
A malonyl-CoA-independent fatty acid synthetic system, different from the systems in other subcellular fractions, occurred in mitochondria of Euglena gracilis. The system had ability to synthesize fatty acids directly from acetyl-CoA as both primer and C2 donor using NADH as an electron donor. Fatty acids were synthesized by reversal of beta-oxidation with the exception that enoyl-CoA reductase functioned instead of acyl-CoA dehydrogenase in degradation system. A fairly high activity of enoyl-CoA reductase was found on various enoyl-CoA substrates (C4-C12) with NADH or NADPH. Three species of enoyl-CoA reductase, distinct from each other by their chain-length specificity, were found in Euglena mitochondria, and one of them was highly specific for crotonyl-CoA. It is also discussed that the mitochondrial fatty-acid synthetic system contributes to wax ester fermentation, the anaerobic energy-generating system found in the organism. 相似文献
13.
The ability of purified mitochondria isolated from S. cerevisiae to synthesize fatty acids and especially very long chain fatty acids (VLCFA) has been investigated. The VLCFA synthesis requires malonyl-CoA as the C2 unit donor and NADPH as the reducing agent. Moreover the yeast mitochondrial elongase is able to accept either exogenous long chain fatty acyl-CoAs as substrates or elongate endogenous substrates. In the latter case, ATP is required for full activity. Besides this important VLCFA formation, the mitochondria from S. cerevisiae were also able to synthesize C16 and C18. 相似文献
14.
Fatty acid synthesis was studied in successive leaf sections from the base to the tip of developing barley (Hordeum vulgare L.), maize (Zea mays L.), rye grass (Lolium perenne L.) and wheat (Triticum aestivium L.) leaves. The basal regions of the leaves had the lowest rates of fatty acid synthesis and accumulated small amounts of very long chain fatty acids. Fatty acid synthesis was highest in the middle leaf sections in all four plants. Linolenic acid synthesis from [1-14C]acetate was highest in the distal leaf sections of rye grass. The labelling of the fatty acids of individual lipids of rye grass was examined and it was found that [14C]linolenic acid was highest in the galactolipids. Synthesis of this acid in the galactolipids was most active in leaf segment C. Only traces of [14C]linolenic acid were ever found in phosphatidylcholine and it is concluded that this phospholipid cannot serve as a substrate for linoleic acid desaturation in rye grass. The synthesis of fatty acids was sensitive to arsenite, fluoride and the herbicide EPTC. The latter was only inhibitory towards those leaf segments which made very long chain fatty acids. Formation of fatty acids from [1-14C]acetate was also studied in chloroplasts prepared from successive leaf sections of rye grass. Chloroplasts isolated from the middle leaf sections had the highest activity. Palmitic and oleic acids were the main fatty acid products in all chloroplast preparations. Linolenic acid synthesis was highest in chlorplasts isolated from the distal leaf sections of rye grass. 相似文献
15.
《The Journal of nutritional biochemistry》2001,12(7):422-430
The importance of fat oxidation and fatty acid synthesis were examined in rats fed approximately one half their ad libitum food intake for a period of 13 days followed by 7 days of ad libitum feeding (refed rats). This study was undertaken because previous reports demonstrated that refed rats rapidly accumulated body fat. Our results confirmed this observation: refed rats accrued body fat and body weight at rates that were approximately 3 times higher than controls. Evidence for a period of increased metabolic efficiency was demonstrated by measuring the net energy requirement for maintenance over the refeeding period: refed rats had a reduced metabolic rate during the period of energy restriction (approximately 30% lower than control) and this persisted up to 2 days after the reintroduction of ad libitum feeding. The major factor responsible for the rapid fat gain was a depressed rate of fatty acid oxidation. Calculations of protein and carbohydrate intake over the refeeding period showed that the simplest explanation for the decrease in fatty acid oxidation is fat sparing. This is possible because of the large increase in dietary carbohydrate and protein intake during the refeeding period when metabolic rates are still depressed. The increased carbohydrate and protein may adequately compensate for the increasing energy requirements of the ER rats over the refeeding period affording rats the luxury of storing the excess dietary fat energy. 相似文献
16.
Intact chloroplasts (about 70% Class I chloroplasts) isolatedfrom spinach leaves incorporated 150 nmoles of [1-14C] acetateinto fatty acids per mg chlorophyll in 1 hr at pH 8.3, 25°Cand 25,000 lux. On electron and phase-contrast microscopiescombined with hypotonic treatment of chloroplasts, this syntheticactivity was shown to be proportional to the percentage of ClassI chloroplasts in the preparation. Light was necessary for thesynthesis, the activity in the complete reaction mixture inthe dark being only 2% of that in the light. The synthetic activityincreased with increasing intensities of light to reach saturationat 6,000 lux. CoA and ATP were most effective as cofactors,HCO3, HPO42, Mg2$ and Mn2$ were less effective.ATP could be replaced by ADP in the presence of Pi, suggestingpossible supply of ATP by photophosphorylation. Omission ofthe NADPH-generation system and NADH did not affect the synthesis,indicating sufficient provision of endogenous NADPH and NADHin intact chloroplasts under light. Addition of DTE did notcause recovery of the synthetic activity of intact chloroplastsin the dark.
1 Present address: Radioisotope Centre, University of Tokyo,Yayoi, Bunkyo, Tokyo 113, Japan. (Received August 26, 1974; ) 相似文献
17.
The modes of actions of photosynthetic inhibitors on photosynthesisand fatty acid synthesis were examined. DCMU, an electron transport inhibitor, inhibited fatty acidsynthesis and photophosphorylation to the same extent, suggestingdependence of fatty acid synthesis on photosynthesis. The samewas also the case with FCCP, a photophosphorylation uncoupler.In contrast, NH4Cl and phlorizin at concentrations completelysuppressing ATP formation, only partially inhibited the fattyacid synthesis. These facts suggest that a certain level ofhigh-energy intermediate (state) is responsible for the lightenhancement of fatty acid synthesis. This idea is further supportedby the fact that the partial inhibition of fatty acid synthesisby NH4Cl was relieved by addition of DCCD at low concentrationssuppressing the ATP formation but not completely destroyingthe high energy intermediate. The lag period in the initial period of fatty acid synthesiswas shortened by preillumination of chloroplasts, even in theabsence of ADP. This indicates that the light dependent fattyacid synthesis is closely associated with the high-energy intermediate(state), but not directly with ATP formation by photophosphorylation.
1 Present address: Radioisotope Centre, University of Tokyo,Yayoi, Bunkyo, Tokyo 113, Japan. (Received August 26, 1974; ) 相似文献
18.
Lippold F vom Dorp K Abraham M Hölzl G Wewer V Yilmaz JL Lager I Montandon C Besagni C Kessler F Stymne S Dörmann P 《The Plant cell》2012,24(5):2001-2014
During stress or senescence, thylakoid membranes in chloroplasts are disintegrated, and chlorophyll and galactolipid are broken down, resulting in the accumulation of toxic intermediates, i.e., tetrapyrroles, free phytol, and free fatty acids. Chlorophyll degradation has been studied in detail, but the catabolic pathways for phytol and fatty acids remain unclear. A large proportion of phytol and fatty acids is converted into fatty acid phytyl esters and triacylglycerol during stress or senescence in chloroplasts. We isolated two genes (PHYTYL ESTER SYNTHASE1 [PES1] and PES2) of the esterase/lipase/thioesterase family of acyltransferases from Arabidopsis thaliana that are involved in fatty acid phytyl ester synthesis in chloroplasts. The two proteins are highly expressed during senescence and nitrogen deprivation. Heterologous expression in yeast revealed that PES1 and PES2 have phytyl ester synthesis and diacylglycerol acyltransferase activities. The enzymes show broad substrate specificities and can employ acyl-CoAs, acyl carrier proteins, and galactolipids as acyl donors. Double mutant plants (pes1 pes2) grow normally but show reduced phytyl ester and triacylglycerol accumulation. These results demonstrate that PES1 and PES2 are involved in the deposition of free phytol and free fatty acids in the form of phytyl esters in chloroplasts, a process involved in maintaining the integrity of the photosynthetic membrane during abiotic stress and senescence. 相似文献
19.
A F Whereat 《Journal of lipid research》1966,7(5):671-677
The objectives of this study were to identify the subcellular fraction responsible for fatty acid synthesis in rabbit aorta and to determine the effect of cholesterol feeding on the system. A method for homogenization of aorta is described which permitted the isolation of subcellular components of aorta, including mitochondria that were morphologically and functionally intact. Mitochondria were identified as the major site of fatty acid synthesis in this tissue. Cofactor requirements and products showed that the synthetic system operates by chain elongation. Mitochondria from atherosclerotic aortas incorporated acetate into fatty acids faster than did mitochondria from control aortas. It is concluded that cholesterol feeding leads to alterations of aortic mitochondrial function and accelerates the fatty acid elongation pathway. 相似文献
20.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1996,1299(2):160-166
Fatty acid ethyl esters are a family of non-oxidative metabolites of ethanol present in many tissues after ethanol consumption. In this report we demonstrate the existence in human liver of an acyl-CoA: ethanol acyltransferase activity which may be responsible in part for the synthesis of these compounds in vivo. The effects of oleoyl-CoA and ethanol concentrations, presence or absence of bovine serum albumin and detergent, pH and enzyme concentration on this activity have been determined. Acyl-CoA: ethanol acyltransferase activity is localised in the membrane-bound fraction. Using inhibitors directed against related enzyme activities, it has been shown that the activity is not related to serine-dependent carboxylesterases or acyl-CoA: cholesterol acyltransferase, but that it may be associated with acyl-CoA hydrolase activity. We have also compared acyl-CoA: ethanol acyltransferase activity with fatty acid ethyl ester synthase activity in microsomes and cytosol from the same liver. Our data indicate that these activities are comparable in vitro (on a units/g liver basis), and suggest that both may be significant in vivo. 相似文献