首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twu KY  Kuo RL  Marklund J  Krug RM 《Journal of virology》2007,81(15):8112-8121
The NS1A proteins of human influenza A viruses bind CPSF30, a cellular factor required for the processing of cellular pre-mRNAs, thereby inhibiting the production of all cellular mRNAs, including beta interferon mRNA. Here we show that the NS1A protein of the pathogenic H5N1 influenza A/Hong Kong/483/97 (HK97) virus isolated from humans has an intrinsic defect in CPSF30 binding. It does not bind CPSF30 in vitro and causes high beta interferon mRNA production and reduced virus replication in MDCK cells when expressed in a recombinant virus in which the other viral proteins are encoded by influenza A/Udorn/72. We traced this defect to the identities of amino acids 103 and 106 in the HK97 NS1A protein, which differ from the consensus amino acids, F and M, respectively, found in the NS1A proteins of almost all human influenza A virus strains. X-ray crystallography has shown that F103 and M106, which are not part of the CPSF30 binding pocket of the NS1A protein, stabilize the NS1A-CPSF30 complex. In contrast to the HK97 NS1A protein, the NS1A proteins of H5N1 viruses isolated from humans after 1998 contain F103 and M106 and hence bind CPSF30 in vitro and do not attenuate virus replication. The HK97 NS1A protein is less attenuating when expressed in a virus that also encodes the other internal HK97 proteins and under these conditions binds to CPSF30 to a substantial extent in vivo. Consequently, these internal HK97 proteins largely compensate for the absence of F103 and M106, presumably by stabilizing the NS1A-CPSF30 complex.  相似文献   

2.
3.
The NS1 protein of human influenza A viruses binds the 30-kDa subunit of the cleavage and polyadenylation specificity factor (CPSF30), a protein required for 3' end processing of cellular pre-mRNAs, thereby inhibiting production of beta interferon (IFN-β) mRNA. The NS1 proteins of pathogenic 1997 H5N1 viruses contain the CPSF30-binding site but lack the consensus amino acids at positions 103 and 106, F and M, respectively, that are required for the stabilization of CPSF30 binding, resulting in nonoptimal CPSF30 binding in infected cells. Here we have demonstrated that strengthening CPSF30 binding, by changing positions 103 and 106 in the 1997 H5N1 NS1 protein to the consensus amino acids, results in a remarkable 300-fold increase in the lethality of the virus in mice. Unexpectedly, this increase in virulence is not associated with increased lung pathology but rather is characterized by faster systemic spread of the virus, particularly to the brain, where increased replication and severe pathology occur. This increased spread is associated with increased cytokine and chemokine levels in extrapulmonary tissues. We conclude that strengthening CPSF30 binding by the NS1 protein of 1997 H5N1 viruses enhances virulence in mice by increasing the systemic spread of the virus from the lungs, particularly to the brain.  相似文献   

4.
The influenza A virus genome consists of eight RNA segments that associate with the viral polymerase proteins (PB1, PB2, and PA) and nucleoprotein (NP) to form ribonucleoprotein complexes (RNPs). The viral NS1 protein was previously shown to associate with these complexes, although it was not clear which RNP component mediated the interaction. Using individual TAP (tandem affinity purification)-tagged PB1, PB2, PA, and NP, we demonstrated that the NS1 protein interacts specifically with NP and not the polymerase subunits. The region of NS1 that binds NP was mapped to the RNA-binding domain.  相似文献   

5.
Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse.  相似文献   

6.
Although an effective interferon antagonist in human and avian cells, the novel H7N9 influenza virus NS1 protein is defective at inhibiting CPSF30. An I106M substitution in H7N9 NS1 can restore CPSF30 binding together with the ability to block host gene expression. Furthermore, a recombinant virus expressing H7N9 NS1-I106M replicates to higher titers in vivo, and is subtly more virulent, than the parental virus. Natural polymorphisms in H7N9 NS1 that enhance CPSF30 binding may be cause for concern.  相似文献   

7.
Twu KY  Noah DL  Rao P  Kuo RL  Krug RM 《Journal of virology》2006,80(8):3957-3965
The emergence of influenza A viruses resistant to the two existing classes of antiviral drugs highlights the need for additional antiviral drugs, particularly considering the potential threat of a pandemic of H5N1 influenza A viruses. Here, we determine whether influenza A virus replication can be selectively inhibited by blocking the ability of its NS1A protein to inhibit the 3'-end processing of cellular pre-mRNAs, including beta interferon (IFN-beta) pre-mRNA. Pre-mRNA processing is inhibited via the binding of the NS1A protein to the cellular CPSF30 protein, and mutational inactivation of this NS1A binding site causes severe attenuation of the virus. We demonstrate that binding of CPSF30 is mediated by two of its zinc fingers, F2F3, and that the CPSF30/F2F3 binding site on the NS1A protein extends from amino acid 144 to amino acid 186. We generated MDCK cells that constitutively express epitope-tagged F2F3 in the nucleus, although at only approximately one-eighth the level of the NS1A protein produced during virus infection. Influenza A virus replication was inhibited in this cell line, whereas no inhibition was observed with influenza B virus, whose NS1B protein lacks a binding site for CPSF30. Influenza A virus, but not influenza B virus, induced increased production of IFN-beta mRNA in the F2F3-expressing cells. These results, which indicate that F2F3 inhibits influenza A virus replication by blocking the binding of endogenous CPSF30 to the NS1A protein, point to this NS1A binding site as a potential target for the development of antivirals directed against influenza A virus.  相似文献   

8.
9.
Phylogenetic analysis of 20 influenza A virus PB2 genes showed that PB2 genes have evolved into the following four major lineages: (i) equine/Prague/56 (EQPR56); (ii and iii) two distinct avian PB2 lineages, one containing FPV/34 and H13 gull virus strains and the other containing North American avian and recent equine strains; and (iv) human virus strains joined with classic swine virus strains (i.e., H1N1 swine virus strains related to swine/Iowa/15/30). The human virus lineage showed the greatest divergence from its root relative to other lineages. The estimated nucleotide evolutionary rate for the human PB2 lineage was 1.82 x 10(-3) changes per nucleotide per year, which is within the range of published estimates for NP and NS genes of human influenza A viruses. At the amino acid level, PB2s of human viruses have accumulated 34 amino acid changes over the past 55 years. In contrast, the avian PB2 lineages showed much less evolution, e.g., recent avian PB2s showed as few as three amino acid changes relative to the avian root. The completion of evolutionary analyses of the PB1, PB2, PA and NP genes of the ribonucleoprotein (RNP) complex permits comparison of evolutionary pathways. Different patterns of evolution among the RNP genes indicate that the genes of the complex are not coevolving as a unit. Evolution of the PB1 and PB2 genes is less correlated with host-specific factors, and their proteins appear to be evolving more slowly than NP and PA. This suggests that protein functional constraints are limiting the evolutionary divergence of PB1 and PB2 genes. The parallel host-specific evolutionary pathways of the NP and PA genes suggest that these proteins are coevolving in response to host-specific factors. PB2s of human influenza A viruses share a common ancestor with classic swine virus PB2s, and the pattern of evolution suggests that the ancestor was an avian virus PB2. This same pattern of evolution appears in the other genes of the RNP complex. Antigenic studies of HA and NA proteins and sequence comparisons of NS and M genes also suggest a close ancestry for these genes in human and classic swine viruses. From our review of the evolutionary patterns of influenza A virus genes, we propose the following hypothesis: the common ancestor to current strains of human and classic swine influenza viruses predated the 1918 human pandemic virus and was recently derived from the avian host reservoir.  相似文献   

10.
Assembly of the heterotrimeric influenza virus polymerase complex from the individual subunits PB1, PA, and PB2 is a prerequisite for viral replication. The conserved protein-protein interaction sites have been suggested as potential drug targets. To characterize the PB1-PB2 interface, we fused the PB1-binding domain of PB2 to green fluorescent protein (PB2(1-37)-GFP) and determined its competitive inhibitory effect on the polymerase activity of influenza A virus strains. Coexpression of PB2(1-37)-GFP in a polymerase reconstitution system led to substantial inhibition of the polymerase of A/WSN/33 (H1N1). Surprisingly, polymerases of other strains, including A/SC35M (H7N7), A/Puerto Rico/8/34 (H1N1), A/Hamburg/4/2009 (H1N1), and A/Thailand/1(KAN-1)/2004 (H5N1), showed various degrees of resistance. Individual exchange of polymerase subunits and the nucleoprotein between the sensitive WSN polymerase and the insensitive SC35M polymerase mapped the resistance to both PB1 and PA of SC35M polymerase. While PB2(1-37)-GFP bound equally well to the PB1 subunits of both virus strains, PB1-PA dimers of SC35M polymerase showed impaired binding compared to PB1-PA dimers of WSN polymerase. The use of PA(SC35M/WSN) chimeras revealed that the reduced affinity of the SC35M PB1-PA dimer was mediated by the N-terminal 277 amino acids of PA. Based on these observations, we speculate that the PB1-PA dimer formation of resistant polymerases shields the PB2(1-37) binding site, whereas sensitive polymerases allow this interaction, suggesting different assembly strategies of the trimeric polymerase complex between different influenza A virus strains.  相似文献   

11.
用RTPCR技术及cDNA末端快速扩增法获得禽流感病毒分离株A/Chicken/Shanghai/F/98(H9N2)代表基因组全长的8个基因片段。基因组序列比较及遗传进化分析结果表明,Chicken/Shanghai/F/98的8个基因均不属于Quail/Hong Kong/G1/97亚系,与香港禽流感事件没有直接关系。它与Chicken/Beijing/1/94的HA、NA、M、NS基因同源率分别为96.7%、96.4%、97.5%和98.0%,这4个基因属于Chicken/Beijing/1/94亚系,其中,NA基因与Duck/Hong Kong/Y280/97的同源率为97.4%,而且它们均在205位后缺失9个核苷酸。而PB2、PB1、PA和NP基因与已知的3个亚系关系较远,分别在相应的进化树上另成分支。因此,Chicken/Shanghai/F/98是两个以上不同基因亚系间发生自然重排的产物。  相似文献   

12.
The 2009 pandemic influenza virus (pH1N1) is a swine-origin reassortant containing human, avian, and swine influenza genes. We have previously shown that the polymerase complex of the pH1N1 strain A/California/04/2009 (Cal) is highly active in mammalian 293T cells, despite the avian origin of both its PA and PB2. In this study, we analyzed the polymerase residues that are responsible for high pH1N1 polymerase activity in the mammalian host. Characterization of polymerase complexes containing various combinations of Cal and avian influenza virus A/chicken/Nanchang/3-120/01 (H3N2) (Nan) by reporter gene assay indicates that Cal PA, but not PB2, is a major contributing factor to high Cal polymerase activity in 293T cells. In particular, Cal PA significantly activates the otherwise inactive Nan polymerase at 37 and 39°C but not at the lower temperature of 34°C. Further analysis using site-directed mutagenesis showed that the Cal PA residues 85I, 186S, and 336M contribute to enhanced activity of the Cal polymerase. Recombinant A/WSN/33 (H1N1) (WSN) viruses containing Nan NP and polymerase (PA, PB1, PB2) genes with individual mutations in PA at residues 85, 186, and 336 produced higher levels of viral protein than the virus containing wild-type (WT) Nan PA. Interestingly, compared to the WT, the virus containing the 85I mutation grew faster in human A549 cells and the 336M mutation most significantly enhanced pathogenicity in a mouse model, among the three PA mutations tested. Our results suggest that multiple mutations in PA, which were rarely present in previous influenza isolates, are involved in mammalian adaptation and pathogenicity of the 2009 pH1N1.  相似文献   

13.
The multiplication of Ulster 73 virus, an avian strain of type A influenza virus, was blocked in chick embryo fibroblast cells, CEF, by treatment with 0.5 microg/ml of chromomycin A3 whereas in LLC-MK2 cells no inhibition of replication was observed. Virus-induced polypeptide synthesis in chick embryo fibroblast cells was confined to the synthesis of PB2, PB1 and PA subunits of the RNA dependent-RNA polymerase, the nucleoprotein NP, the non-structural protein NS1, the haemagglutinin HA, the non-structural protein NS2; only the membrane M1 polypeptide synthesis was greatly inhibited. Viral unpolyadenylated cRNAs synthesis was studied at a late time of the infection, 8 hours p.i.: chromomycin A3 was able to inhibit the "novo" synthesis of complementary RNA poly(A)- and segment 7 of virion RNA. The mode of action of the drug in chick embryo fibroblast cells is discussed.  相似文献   

14.
15.
Amongst all the internal gene segments (PB2. PB1, PA, NP, M and NS), the avian PB1 segment is the only one which was reassorted into the human H2N2 and H3N2 pandemic strains. This suggests that the reassortment of polymerase subunit genes between mammalian and avian influenza viruses might play roles for interspecies transmission. To test this hypothesis, we tested the compatibility between PB2, PB1, PA and NP derived from a H5N1 virus and a mammalian H1N1 virus. All 16 possible combinations of avian-mammalian chimeric viral ribonucleoproteins (vRNPs) were characterized. We showed that recombinant vRNPs with a mammalian PB2 and an avian PB1 had the strongest polymerase activities in human cells at all studied temperature. In addition, viruses with this specific PB2-PB1 combination could grow efficiently in cell cultures, especially at a high incubation temperature. These viruses were potent inducers of proinflammatory cytokines and chemokines in primary human macrophages and pneumocytes. Viruses with this specific PB2-PB1 combination were also found to be more capable to generate adaptive mutations under a new selection pressure. These results suggested that the viral polymerase activity might be relevant for the genesis of influenza viruses of human health concern.  相似文献   

16.

Background

Genetic reassortment plays a critical role in the generation of pandemic strains of influenza virus. The influenza virus RNA polymerase, composed of PB1, PB2 and PA subunits, has been suggested to influence the efficiency of genetic reassortment. However, the role of the RNA polymerase in the genetic reassortment is not well understood.

Methodology/Principal Findings

Here, we reconstituted reassortant ribonucleoprotein (RNP) complexes, and demonstrated that the PB2 subunit of A/HongKong/156/1997 (H5N1) [HK PB2] dramatically reduced the synthesis of mRNA, cRNA and vRNA when introduced into the polymerase of other influenza strains of H1N1 or H3N2. The HK PB2 had no significant effect on the assembly of the polymerase trimeric complex, or on promoter binding activity or replication initiation activity in vitro. However, the HK PB2 was found to remarkably impair the accumulation of RNP. This impaired accumulation and activity of RNP was fully restored when four amino acids at position 108, 508, 524 and 627 of the HK PB2 were mutated.

Conclusions/Significance

Overall, we suggest that the PB2 subunit of influenza polymerase might play an important role for the replication of reassortant ribonucleoprotein complexes.  相似文献   

17.
18.
19.
Nucleotide sequence of the A/Kiev/59/79 influenza virus PB1 gene is reported, thus completing the full-genome primary structure of the recombinant between the virus and laboratory strain A/PR/8/34. The parental strain A/Kiev/59/79 (H1N1) is, in turn, shown to be a natural reassortant inheriting its genes of polymerase complex (PB1, PB2, NP and, in all probability, PA) from contemporary H3N2 influenza virus strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号