首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A comparison of the molecular properties of the male Long-Evans rat and male C57BL/6 mouse hepatic cytosolic aryl hydrocarbon (Ah) receptor complex was determined using 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,7,8-[3H]tetrachlorodibenzofuran (TCDF) as radioligands. In low salt buffer, the sedimentation coefficients, Stokes radii, relative molecular masses, frictional ratios, axial ratios and gel permeation chromatographic properties of the rat receptor complexes were ligand independent. In contrast, there were several ligand-dependent differences in the mouse Ah receptor complexes formed after incubation in low salt buffer and these include: sucrose density gradient analysis of the 2,3,7,8-[3H]TCDF receptor complex gave a 9.5 S specifically bound peak and a 2.6 S nonspecifically bound peak whereas the corresponding 2,3,7,8-[3H]TCDD receptor complex gave a single 9.6 S specifically bound peak; sucrose density gradient analysis of the two major peaks eluted from a Sephacryl S-300 column chromatographic separation of the 2,3,7,8-[3H]TCDF receptor complex gave two specifically bound peaks at 9.2 and 5.1 S. The molecular properties of the rat hepatic cytosolic receptor complexes incubated in high salt (0.4 M KCl) buffer were ligand independent with one exception, namely the significant difference in the sedimentation coefficient of the specifically bound disaggregated 2,3,7,8-[3H]TCDD receptor complex (6.8 S) and the corresponding 2,3,7,8-[3H]TCDF receptor complex (5.0 S). The major ligand-dependent differences in the mouse receptor complexes incubated in high salt (0.4 M KCl) were associated with the sedimentation coefficients of the complexes derived after direct incubation and after gel permeation chromatography. For example, both ligands gave two specifically bound complexes after chromatography on Sephacryl S-300 column and centrifugation of these fractions gave both the approximately 9 and approximately 5 S peaks; this suggested that there was some equilibration between the aggregated and disaggregated receptor complexes. The behavior of the 2,3,7,8-[3H]TCDF mouse receptor complex was similar after incubation in low or high salt buffer except that sucrose density gradient analysis of the gel permeation chromatographic fractions gave an additional specifically bound peak which sedimented at 7.2 S. These studies demonstrate that the molecular properties of the Ah receptor were dependent on the source of the cytosolic receptor preparation, the ionic strength of the incubation media, and the structure of the radioligand.  相似文献   

2.
6-Methyl-8-iodo-1,3,-dichlorodibenzofuran (I-MCDF) and its radiolabeled analog [125I]MCDF have been synthesized and used to investigate the mechanism of action of 1,3,6,8-substituted dibenzofurans as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) antagonists. Like 6-methyl-1,3,8-trichlorodibenzofuran (MCDF), I-MCDF partially antagonized the induction by TCDD of microsomal aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD) activities in rat hepatoma H-4-II E cells and male Long-Evans rat liver. Incubation of rat liver cytosol with [125I]MCDF followed by velocity sedimentation analysis on sucrose gradients gave a specifically bound peak which sedimented at 9.6 S. This radioactive peak was displaced by coincubation with a 200-fold excess of unlabeled I-MCDF, 6-methyl-1,3,8-trichlorodibenzofuran (MCDF), 2,3,7,8-tetrachlorodibenzofuran (TCDF), and benzo [a]pyrene. Based on the velocity sedimentation results and the elution profile from a Sephacryl S-300 gel permeation column, the Stokes radius and apparent molecular weights of the cytosolic [125I]MCDF-Ah receptor complex were 6.5 nm and 259,200, respectively. In addition, the nuclear [125I]MCDF-receptor complex eluted at a salt concentration of 0.29 M KCl from a DNA-Sepharose column. Velocity sediment analysis of the nuclear [125I]MCDF-Ah receptor complex from rat hepatoma H-4-II E cells gave a specifically bound peak at 5.6 +/- 0.8 S. All of these properties were similar to those observed using [3H]TCDD as the radioligand. In addition, there were several ligand-dependent differences observed in the properties of the I-MCDF and TCDD receptor complexes; for example, the [125I]MCDF rat cytosolic receptor complex was unstable in high salt buffer and was poorly transformed into a form with increased binding affinity on DNA-Sepharose columns; Scatchard plot analysis of the saturation binding of [3H]TCDD and [125I]MCDF with rat hepatic cytosol gave KD values of 1.07 and 0.13 nM and Bmax values of 137 and 2.05 fmol/mg protein, respectively. The nuclear extract from rat hepatoma H-4-II E cells treated with I-MCDF or TCDD interacted with a dioxin-responsive element in a gel retardation assay. These results suggest that the mechanism of antagonism may be associated with competition of the antagonist receptor complex for nuclear binding sites.  相似文献   

3.
4.
5.
Cytosol from rodent liver was exposed to a variety of sulfhydryl-modifying reagents to determine if the cytosolic Ah receptor contained reactive sulfhydryl groups that were essential for preservation of the receptor's ligand binding function. At a 2 mM concentration in rat liver cytosol, all sulfhydryl-modifying reagents tested (except iodoacetamide) both blocked binding of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to unoccupied receptor and caused release of [3H]TCDD from receptor sites that had been labeled with [3H]TCDD before exposure to the sulfhydryl-modifying reagent. Exposure of cytosol to iodoacetamide before labeling with [3H]TCDD prevented subsequent specific binding of [3H]TCDD, but iodoacetamide was not effective at displacing previously bound [3H]TCDD from the Ah receptor. The mercurial reagents, mersalyl, mercuric chloride, and p-hydroxymercuribenzoate, were more effective at releasing bound [3H]TCDD from previously labeled sites than were alkylating agents (iodoacetamide, N-ethylmaleimide) or the disulfide compound 5,5'-dithiobis(2-nitrobenzoate). Presence of bound [3H]TCDD substantially protected the Ah receptor against loss of ligand binding function when the cytosol was exposed to sulfhydryl-modifying reagents. This may indicate that the critical sulfhydryl groups lie in or near the ligand binding site on the receptor. Subtle differences exist between the Ah receptor and the receptors for steroid hormones in response to a spectrum of sulfhydryl-modifying reagents, but the Ah receptor clearly contains a sulfhydryl group (or groups) essential for maintaining the receptor in a state in which it can bind ligands specifically and with high affinity.  相似文献   

6.
The individual pretreatment of Sprague-Dawley rats with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2,2',4,4',5,5'-hexachlorobiphenyl (HCB) has been previously shown to result in the "induction" of [3H]TCDD specific binding activity in hepatic tissue. In the present work, the coadministration of TCDD and HCB increased the concentration of hepatic proteins capable of binding [3H]TCDD specifically by at least 2-3-fold. This increase was shown not to be the result of activation, by HCB, of a form of the receptor having low affinity toward [3H]TCDD into a form with high affinity. Kinetic analysis of the time course of binding of [3H]TCDD to induced cytosol was consistent with the presence of an "inducible" binding protein in addition to the "constitutive" aryl hydrocarbon (Ah) receptor present in cytosol from untreated animals. The liganded ([3H]TCDD) form of the inducible binding component lost its ligand much faster than the liganded form of the constitutive Ah receptor at 37 degrees C; apparent first order rate constants for loss of [3H]TCDD were 0.55 min-1 and less than 0.0024 min-1, respectively. Conversely, the unliganded form of the induced binding component was slightly more stable (approximately 2-fold) toward thermal inactivation than the unbound constitutive Ah receptor. The [3H]TCDD-bound protein(s) in uninduced and induced cytosols behaved identically in a sucrose gradient; 8.7-8.9 S in the absence of salt, shifted to 5.5 S by 0.4 M KCl. They were also indistinguishable by gel permeation chromatography, and by photoaffinity labeling their TCDD-binding subunits, approximate molecular weights 105,000. These results show the hepatic TCDD-binding protein(s) induced upon pretreatment of Sprague-Dawley rats with TCDD/HCB to be kinetically distinct from the Ah receptor, but structurally very similar.  相似文献   

7.
The differences in the molecular properties of the nuclear aryl hydrocarbon (Ah) receptor from human Hep G2 and mouse Hepa 1c1c7 cells were investigated by time-dependent partial proteolysis with chymotrypsin or trypsin followed by column chromatographic and velocity sedimentation analysis. The sedimentation coefficients, Stokes radii and apparent molecular weights of the untreated human and mouse Ah receptor complexes were similar. Treatment of the nuclear Ah receptor complexes from both cell lines with chymotrypsin for 10 or 60 min gave lower molecular weight proteolytic products which also exhibited comparable molecular properties and salt gradient elution profiles from Sepharose columns linked to DNA. Treatment of the human and mouse nuclear Ah receptor complexes with trypsin (5 micrograms/mg protein) for 10 or 60 min gave a minor low molecular weight (29.7- or 25.7-kDa) proteolysis product which was detected only with the mouse Hepa 1c1c7 Ah receptor complex. The time- and concentration-dependent proteolytic digest maps of the human and mouse Ah receptor were determined using receptor preparations which were photoaffinity labeled with [125I]7-iodo-2, 3-dibromodibenzo-p-dioxin. The human Ah receptor was significantly more resistant to proteolysis by trypsin or chymotrypsin than the mouse Ah receptor. At a low concentration of chymotrypsin (1 microgram/mg protein) the Hepa 1c1c7 receptor was degraded to two lower molecular weight fragments with apparent M(r) values at 71- and 48-kDa whereas the Hep G2 Ah receptor was relatively stable under these conditions. Although the human Ah receptor was more slowly hydrolyzed than the mouse receptor by trypsin, the major photolabeled breakdown products for the Ah receptor from both cell lines were observed at M(r) 48- and 45-kDa. The results of this study demonstrate that there were subtle but significant differences in the human and mouse Ah receptor complex; however, the proteolysis studies suggest that there are common structural features in their ligand binding sites.  相似文献   

8.
The characteristics of the Ah receptor from rat liver were investigated following the incubation of cytosol with [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) under various conditions, and using DEAE- and DNA-Sepharose chromatography and sucrose density gradient centrifugation. These studies indicated that the Ah receptor can exist in three distinct forms in vitro that are dependent on the presence or absence of TCDD and the duration and temperature of incubation. The unoccupied receptor was distinguished by its elution from DEAE-Sepharose columns at 0.20-0.23 M NaCl and lack of affinity for DNA-Sepharose. Following the incubation of the unoccupied receptor with [3H]TCDD, two occupied forms were distinguished based on their overall surface charges and affinities for DNA. One of these forms was predominant following short incubations (2 h) with [3H]TCDD at a low temperature (0 degree C) and was characterized by having the same elution profile on DEAE-Sepharose as the unoccupied form, but demonstrated some affinity for DNA. Another occupied form was predominant following an incubation for a longer time (20 h, 0 degree C) or at an elevated temperature (2 h, 20 degrees C). This form had an overall surface charge that was less negative and a greater affinity for DNA. These changes in receptor characteristics were dependent on the presence of TCDD and were not accompanied by apparent changes in the sedimentation coefficients of the two occupied forms. Anion exchange chromatography of the [3H]TCDD-receptor complex extracted from hepatic nuclei of [3H]TCDD-treated rats indicated that the ligand-induced change of the unoccupied receptor to a less negatively charged form had occurred in vivo. These results indicated a biochemical heterogeneity of the Ah receptor and suggested the occurrence of a ligand- and temperature-dependent transformation process in vivo and in vitro.  相似文献   

9.
Incubation of radiolabeled, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF),1,2,3,7,8-pentachlorodibenzo-p-dioxin(PeCDD), 1,2,3,7,8-pentachlorodibenzofuran (PeCDF), 1,2,7,8-TCDF, and 2,3,7-trichlorodibenzo-p-dioxin (TrCDD) with rat hepatic cytosol for 2 h at 0 degrees C gave liganded aryl hydrocarbon (Ah) receptor complexes which were indistinguishable as determined by velocity sedimentation analysis and DNA-Sepharose column chromatography. Incubation of the cytosol plus the different radioligands for 2 h at 20 degrees C resulted in the formation of Ah receptor complexes which exhibited increased retention times on DNA-Sepharose columns. It was apparent that the amount of specifically bound Ah receptor complex or the levels of the transformed Ah receptor complex which eluted from the column with 0.2-0.3 M salt were dependent on the structure of the radioligand. For example, after incubation for 2 h at 20 degrees C the overall yields of the specifically bound transformed Ah receptor complex were 3.4, 2.0, 1.2, 1.9, 0.3, and 0.1%, respectively, using 2,3,7,8-TCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, 1,2,7,8-TCDF, and 2,3,7,8-TrCDD as radioligands. A more quantitative measure of the structure-dependent transformation of the liganded cytosolic Ah receptor complex was determined using a gel retardation assay with a consensus synthetic dioxin-responsive element (DRE) (26-mer, duplex). The EC50 values obtained for the concentration-dependent formation of the retarded DRE-Ah receptor complex using 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF, 2,3,7-TrCDD, and 1,2,7,8-TCDF as ligands were 0.26, 0.35, 0.78, 1.75, 27.0, and 220 nM, respectively. The structure-dependent differences in these values were similar to their different potencies as Ah receptor agonists and these data suggest that the structure-dependent transformation of the liganded cytosolic Ah receptor may significantly contribute to the structure-activity relationships observed for 2,3,7,8-TCDD and related compounds.  相似文献   

10.
C3H/1OT1/2 clone 8 mouse fibroblasts (C3H/1OT1/2 cells) exhibit induction of aryl hydrocarbon hydroxylase (cytochrome P1-450) when exposed in culture to benzo(a)pyrene, benz(a)anthracene or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but do not display the induction response when treated with 3-methylcholanthrene (MCA), the classical inducer of cytochrome P1-450. Induction of cytochrome P1-450 is regulated by the Ah receptor which initially binds inducing chemicals in the cytoplasm, after which the inducer x receptor complex translocates into the nucleus. Cytosolic and nuclear forms of the Ah receptor can be detected in C3H/1OT1/2 cells using [3H]TCDD as the radioligand in culture, but specific Ah receptor binding is not detectable within C3H/1OT1/2 cells incubated with [3H]MCA. In contrast, in Hepa-1c1 cells, which exhibit cytochrome P1-450 induction when treated with MCA, cytosolic and nuclear Ah receptor can be detected by incubation of the cells either with [3H]MCA or with [3H]TCDD. Nonradioactive MCA is able to compete with [3H]TCDD for Ah receptor sites in C3H/1OT1/2 cells, but the relative potency of MCA as a competitor is lower within C3H/1OT1/2 cells than in C3H/1OT1/2 cytosol during extracellular incubation. Specific binding of [3H]MCA to Ah receptor can be detected by incubation of [3H]MCA with C3H/1OT1/2 cytosol outside the cell. The selective loss of response to MCA as a cytochrome P1-450 inducer (while retaining response to other inducers) appears to be due to defective interaction of MCA with the Ah receptor within the intracellular environment. The specific molecular alteration which makes the MCA x receptor complex ineffective within C3H/1OT1/2 cells is unknown. Some fibroblast lines other than C3H/1OT1/2 also selectively fail to respond to MCA; thus, this variation in Ah receptor function may not be due to a mutational change in the Ah regulatory gene which codes for the Ah receptor.  相似文献   

11.
The ability of protamine sulfate to effect the quantitative precipitation of 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (TCDD):Ah receptor complexes from rat liver cytosol has been developed into a new assay for the identification, quantitation, and characterization of the Ah receptor. The method is reliable, uncomplicated, and rapid, and can be applied to large numbers of samples. The major advantage of the assay is that protamine sulfate appears to selectively precipitate the Ah receptor protein and does not precipitate a number of other proteins that bind [3H]TCDD nonspecifically.  相似文献   

12.
13.
Ah receptor in hepatic cytosols from adult cynomolgus monkeys (Macaca fasicularis) was identified and quantitated by its binding of the highly toxic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the carcinogens 3-methylcholanthrene, benzo[a]pyrene, and dibenz[a,h]anthracene. The concentration of Ah receptor in cynomolgus hepatic cytosols (approximately 10 fmol/mg cytosol protein) was about one-quarter of that typically detected in rodent hepatic cytosols. Receptor concentrations were equal in male and female cynomolgus. [3H]TCDD bound to cytosolic receptor with high affinity (Kd approximately 3 nM). In rodents, Ah receptor is known to play a central role in toxicity caused by halogenated aromatic compounds and in carcinogenesis caused by polycyclic aromatic hydrocarbons. Existence of Ah receptor in monkeys indicates that the receptor also may mediate such responses in primates.  相似文献   

14.
The in vivo long-term cytosolic-nuclear kinetics and DNA-binding properties of the Ah receptor were examined in liver from the golden Syrian hamster. For the kinetic studies, a dose of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin ([3H]TCDD) that has been previously shown to produce maximal and sustained hepatic enzyme induction without substantial toxicity was used. Following an intraperitoneal dose of 10 micrograms/kg of [3H]TCDD, occupied cytosolic receptor levels reached a peak within 8 h and then decreased rapidly to a level that was approximately 2% of the total receptor. Throughout the 35-day period, unoccupied cytosolic receptor represented from 65 to 80% of the total receptor content. At 8 h following dosing, less than 30% of the total amount of receptor was associated with the nuclear fraction; this percentage declined slowly to less than 5% of the total at Day 35. The half-life for the decline in detectable nuclear receptor levels was 13 days and was similar to the half-life for the decline in [3H]TCDD content of the whole liver, cytosol, and nuclear extract. The Ah receptor contained in hamster hepatic cytosol underwent a ligand-dependent transformation in vitro to two forms having affinity for DNA-Sepharose, one of which was isolated from nuclei of animals treated with [3H]TCDD in vivo. A comparison of the specific binding recovered following various analytical procedures revealed that the binding of [3H]TCDD to the form not found in nuclear extracts was more labile under certain experimental conditions. These studies indicate the heterogeneity of the Ah receptor in hamster hepatic cytosol and suggest that DNA binding in vitro and nuclear uptake in vivo occur through a ligand-dependent transformation process. The maintenance of maximal hepatic enzyme induction is, in part, a consequence of the sustained presence in the nucleus of only a small percentage of the total receptor content. The whole-tissue kinetics of TCDD appears to be a major factor regulating the long-term retention of the TCDD-receptor complex in the nucleus.  相似文献   

15.
The Ah (aromatic hydrocarbon) receptor mediates induction of aryl hydrocarbon hydroxylase (AHH; an enzyme activity associated with cytochrome P450IA1) by polycyclic aromatic hydrocarbon carcinogens such as 3-methylcholanthrene (MC) and benzo[a]pyrene (BP) and the halogenated toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Until recently the AhR seemed to be present only at very low levels in human cells and tissue. With a modified assay (the presence of sodium molybdate and a reduction in the amount of charcoal used to adsorb "excess" ligand) we found that cytosol from LS180 cells contains a high concentration of AhR (400-500 fmol/mg cytosolic protein) when detected by [3H]TCDD or [3H]MC. Cytosolic receptor also was detected with [3H]BP but at a level that was 35% of that detected with [3H]TCDD or [3H]MC. These levels are similar to those found in mouse Hepa-1 hepatoma cells in which AhR has been extensively characterized. The apparent binding affinity (Kd) of the cytosolic receptor for [3H]TCDD and for [3H]MC was about 5 nM. As with Hepa-1, the human LS180 cytosolic AhR sedimented at about 9 S on sucrose gradients when detected with [3H]TCDD, [3H]BP or [3H]MC. The nuclear-associated ligand.receptor complex recovered from cells incubated in culture with [3H]TCDD sedimented at about 6.2 S. The 9.8 S cytosolic form corresponds to a multimeric protein of a relative molecular mass (Mr) of about 285,000 whereas the 6.2 S nuclear receptor corresponds to a multimeric protein of Mr 175,000. The smallest specific ligand-binding subunit (detected by sodium dodecyl sulfate-polyacrylamide electrophoresis under denaturing conditions of receptor photoaffinity labeled with [3H]TCDD) was about Mr 110,000. AHH activity was induced in cells exposed in culture to TCDD or benz[a]anthracene (BA). The EC50 was 4 x 10(-10) M for TCDD and 1.5 x 10(-5) M for BA. For both inducers the EC50 in LS180 cells was shifted about one log unit to the right as compared to the EC50 for AHH induction in mouse Hepa-1 cells. The lower sensitivity of the LS180 cells to induction of AHH activity by TCDD or BA is consistent with the lower affinity of TCDD and MC for binding to human AhR. The ligand-binding properties, physicochemical properties, and mode of action of the AhR in this human cell line are therefore very similar to those of the extensively characterized AhR in rodent cells and tissues.  相似文献   

16.
The Ah receptor, a soluble cytoplasmic receptor that regulates induction of cytochrome P450IA1 and mediates toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was detected and characterized in the continuous human liver cell line Hep G2. The mean concentration of specific binding sites for TCDD was 112 +/- 26 (SEM) fmol/mg cytosol protein as determined in eight separate cytosol preparations in the presence of sodium molybdate. This is equivalent to 14,000 binding sites per cell, approximately 40% of the sites per cell found in the mouse hepatoma line Hepa-1. The cytosolic Ah receptor from Hep G2 cells sedimented at 9 S and was specific for those halogenated and nonhalogenated aromatic compounds known to be agonists for the Ah receptor in rodent tissues and cells. Specific binding in the 9 S region was detected with both [3H]TCDD and 3-[3H]methylcholanthrene. 3-[3H]Methylcholanthrene did not bind to any component besides that at approximately 9 S. Phenobarbital, dexamethasone, and estradiol did not compete with [3H]TCDD for binding to the Hep G2 Ah receptor. Specific binding of [3H]triamcinolone acetonide to glucocorticoid receptor could also be demonstrated in Hep G2 cytosol. The apparent equilibrium dissociation constant (Kd) for binding of [3H]TCDD to Hep G2 Ah receptor was 9 nM by Woolf plot analysis, about an order of magnitude weaker than the affinity of [3H]TCDD for the mouse Hepa-1 Ah receptor or for the C57BL/6 murine hepatic Ah receptor. [3H]TCDD.Ah receptor complex, which was extracted from nuclei of Hep G2 cells incubated with [3H]TCDD at 37 degrees C in culture, sedimented at approximately 6 S under conditions of high ionic strength. Aryl hydrocarbon hydroxylase (AHH) activity was significantly induced after 24 h of incubation with polycyclic aromatic hydrocarbons: the EC50 for AHH induction was 5.3 microM for benz(a)anthracene and 1.3 microM for 3-methylcholanthrene. Modification of the preparative technique for cell cytosol, especially inclusion of 20 mM sodium molybdate in homogenizing and other buffers, was necessary to detect cytosolic Hep G2 Ah receptor. Hep G2 cells appear to conserve drug-metabolizing activity associated with cytochrome P450IA1 as well as the receptor mechanism which regulates its induction.  相似文献   

17.
Molecular properties of nuclear aromatic hydrocarbon (Ah) receptor from Hepa-1c1c9 (Hepa-1) cells were assessed by velocity sedimentation on sucrose gradients and by gel permeation chromatography on Sephacryl S-300. Nuclear Ah receptor was obtained by exposing intact cells to [3H]-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 1 h at 37 degrees C in culture followed by extraction of receptor from nuclei with buffers containing 0.5 M KCl. The nuclear Ah receptor was compared to the cytosolic Ah receptor from the same cells. Under conditions of low ionic strength, the Ah receptor from Hepa-1 cytosol sedimented as a single 9.4 +/- 0.63 S binding peak that had a Stokes radius of 7.1 +/- 0.12 nm and an apparent relative molecular mass of 271,000 +/- 16,000. After prolonged (24 h) exposure to high ionic strength (0.5 M KCl), cytosol labeled with [3H]TCDD exhibited two specific binding peaks. The large form of cytosolic Ah receptor seen under high ionic strength conditions sedimented at 9.4 +/- 0.46 S, had a Stokes radius of 6.9 +/- 0.19 nm, and an apparent Mr 267,000 +/- 15,000. The smaller ligand-binding subunit generated by exposing cytosol to 0.5 M KCl sedimented at 4.9 +/- 0.62 S, had a Stokes radius of 5.0 +/- 0.14 nm, and an apparent Mr 104,000 +/- 12,000. Nuclear Ah receptor, analyzed under high ionic strength conditions, sedimented at 6.2 +/- 0.20 S, had a Stokes radius of 6.8 +/- 0.19 nm, and an apparent Mr 176,000 +/- 7000. Nuclear Ah receptor from rat H4IIE hepatoma cells was analyzed and found to have physicochemical characteristics identical to those of nuclear Ah receptor from the mouse Hepa-1 cells. The molecular mass of Hepa-1 nuclear Ah receptor was found to be statistically different from both the Mr approximately 267,000 cytosolic Ah receptor and the Mr approximately 104,000 subunit which were present in cytosol under high ionic strength conditions. Hepa-1 nuclear Ah receptor could not be converted to a smaller ligand-binding subunit by treatment with alkaline phosphatase, ribonuclease, or sulfhydryl-modifying reagents or prolonged exposure to 1.0 M KCl. Cytosolic Ah receptor from Hepa-1 cells was "transformed" by heating at 25 degrees C in vitro into a form with high affinity for DNA-cellulose. The transformed cytosolic Ah receptor, when analyzed under conditions of high ionic strength, sedimented at approximately 6 S, had a Stokes radius of approximately 6.7 nm, and an apparent Mr approximately 167,000.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
Treatment of wild-type (wt) aryl hydrocarbon (Ah)-responsive mouse Hepa 1c1c7 cells with benzo[a]pyrene (B[a]P) caused a concentration-dependent induction of ethoxyresorufin O-deethylase (EROD) activity. In contrast, B[a]P was inactive as an inducer in Ah nonresponsive class 1 and class 2 mutant cell lines. In parallel experiments, the nuclear fractions from wt cells treated with 10(-7) M [3H]B[a]P contained both the 4 s carcinogen binding protein and the 6 s (Ah receptor) complexes, whereas only the 4 s complex was present in the nuclear fraction of the class 2 mutant cells. The results obtained from cotreatment of wt Hepa 1c1c7 cells with 10(-6) or 10(-7) M B[a]P and 5 x 10(-7) or 10(-7) M 6-methyl-1,3,8-trichlorodibenzofuran (MCDF) showed that MCDF inhibited the induction of EROD activity and Cyp1a-1 mRNA levels by B[a]P. Moreover, using 10(-7) M [3H]B[a]P and unlabeled MCDF, it was shown that MCDF not only inhibited the induction response but also caused a concentration-dependent decrease in levels of the nuclear 6 s complex but not the 4 s complex. In contrast, in situ competition studies with unlabeled 10(-6) M benzo[ghi]-perylene (B[ghi]P) resulted in the elimination of the nuclear [3H]B[a]P 4 s complex (but not the 6 s complex); however, the EROD activity and Cyp1a-1 mRNA levels in cells treated with 10(-7) M B[a]P in the presence or absence of 10(-6) M B[ghi]P were not significantly different. These results indicate that the 4 s binding protein is not required for the induction of Cyp1a-1 gene expression in Hepa 1c1c7 cells and suggest that B[a]P and 2,3,7,8-tetrachlorodibenzo-p-dioxin induce Cyp1a-1 gene expression via a common mechanism which involves binding to the Ah receptor.  相似文献   

20.
Molecular properties of cytosolic Ah receptors from livers of Sprague-Dawley rats and C57BL/6N mice were assessed by velocity sedimentation on sucrose gradients and by gel permeation chromatography on Sephacryl S-300. Analyses were done under conditions of both moderate ionic strength (presence of 0.1 M KCl) and high ionic strength (0.4 M KCl). [3H] 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was used as the radioligand. In conditions of moderate ionic strength the receptor from Sprague-Dawley rat liver sedimented at 8.8 +/- 0.05 S, had a Stokes radius of 7.0 +/- 0.21 nm, and an apparent relative molecular mass (Mr) of 257,000 +/- 7,700. In conditions of high ionic strength the Ah receptor from rat hepatic cytosol dissociated to a [3H]TCDD-binding subunit which sedimented at 5.6 +/- 0.58 S, had a Stokes radius of 5.2 +/- 0.24 nm, and an apparent Mr of 121,000 +/- 5,600. The Ah receptor from liver of C57BL/6N mice, in moderate ionic strength conditions, sedimented at 9.4 +/- 0.54 S, had a Stokes radius of 7.1 +/- 0.12 nm, and an apparent Mr of 277,000 +/- 4,800. Whereas the Ah receptor from rat liver readily dissociated into a [3H]TCDD-binding subunit during brief exposure to 0.4 M KCl, the mouse Ah receptor resisted dissociation. When exposed to 0.4 M KCl for 2 h, the mouse Ah receptor remained at the same molecular size that it had exhibited in moderate ionic strength conditions. Prolonged exposure (16 h) to 0.4 M KCl prior to analysis partially converted the mouse Ah receptor into a smaller [3H]TCDD-binding subunit which sedimented at 4.9 +/- 0.07 S, had a Stokes radius of 5.2 +/- 0.19 nm, and an apparent Mr of 105,000 +/- 3,800. The potency of seven different Ah receptor agonists in competing with [3H]TCDD for specific receptor sites was slightly different in mouse cytosol than in rat cytosol. By criteria of size, response to high ionic strength environments, and ligand binding preferences the mouse and rat Ah receptors appear to be similar but not identical molecular species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号