首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of IL-18 in acute lung inflammation.   总被引:12,自引:0,他引:12  
We have examined the role of IL-18 after acute lung inflammation in rats caused by intrapulmonary deposition of IgG immune complexes. Constitutive IL-18 mRNA and protein expression (precursor form, 26 kDa) were found in normal rat lung, whereas in inflamed lungs, IL-18 mRNA was up-regulated; in bronchoalveolar (BAL) fluids, the 26-kDa protein form of IL-18 was increased at 2-4 h in inflamed lungs and remained elevated at 24 h, and the "mature" protein form of IL-18 (18 kDa) appeared in BAL fluids 1-8 h after onset of inflammation. ELISA studies confirmed induction of IL-18 in inflamed lungs (in lung homogenates and in BAL fluids). Prominent immunostaining for IL-18 was found in alveolar macrophages from inflamed lungs. When rat lung macrophages, fibroblasts, type II cells, and endothelial cells were cultured in vitro with LPS, only the first two produced IL-18. Intratracheal administration of rat recombinant IL-18 in the lung model caused significant increases in lung vascular permeability and in BAL content of neutrophils and in BAL content of TNF-alpha, IL-1beta, and cytokine-induced neutrophil chemoattractant, whereas intratracheal instillation of anti-IL-18 greatly reduced these changes and prevented increases in BAL content of IFN-gamma. Intratracheal administration of the natural antagonist of IL-18, IL-18 binding protein, resulted in suppressed lung vascular permeability and decreased BAL content of neutrophils, cytokines, and chemokines. These findings suggest that endogenous IL-18 functions as a proinflammatory cytokine in this model of acute lung inflammation, serving as an autocrine activator to bring about expression of other inflammatory mediators.  相似文献   

2.
Pulmonary inflammation, abnormalities in alveolar type II cell and macrophage morphology, and pulmonary fibrosis are features of Hermansky-Pudlak Syndrome (HPS). We used the naturally occurring "pearl" HPS2 mouse model to investigate the mechanisms of lung inflammation observed in HPS. Although baseline bronchoalveolar lavage (BAL) cell counts and differentials were similar in pearl and strain-matched wild-type (WT) mice, elevated levels of proinflammatory (MIP1gamma) and counterregulatory (IL-12p40, soluble TNFr1/2) factors, but not TNF-alpha, were detected in BAL from pearl mice. After intranasal LPS challenge, BAL levels of TNF-alpha, MIP1alpha, KC, and MCP-1 were 2- to 3-fold greater in pearl than WT mice. At baseline, cultured pearl alveolar macrophages (AMs) had markedly increased production of inflammatory cytokines. Furthermore, pearl AMs had exaggerated TNF-alpha responses to TLR4, TLR2, and TLR3 ligands, as well as increased IFN-gamma/LPS-induced NO production. After 24 h in culture, pearl AM LPS responses reverted to WT levels, and pearl AMs were appropriately refractory to continuous LPS exposure. In contrast, cultured pearl peritoneal macrophages and peripheral blood monocytes did not produce TNF-alpha at baseline and had LPS responses which were no different from WT controls. Exposure of WT AMs to heat- and protease-labile components of pearl BAL, but not WT BAL, resulted in robust TNF-alpha secretion. Similar abnormalities were identified in AMs and BAL from another HPS model, pale ear HPS1 mice. We conclude that the lungs of HPS mice exhibit hyperresponsiveness to LPS and constitutive and organ-specific macrophage activation.  相似文献   

3.
The alveolar macrophage (AM) secretes interleukin 1beta (IL-1beta), tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-8 (IL-8), all of them inflammatory cytokines involved in the pathogenesis of many lung diseases. The aim of the present work was to evaluate the basal and stimulated secretion of these cytokines by human AMs. Human AMs were collected by bronchoalveolar lavage (BAL) from four healthy controls and 13 patients with diffuse interstitial lung disease (five cases of sarcoidosis, three of hypersensitivity pneumonitis and five of idiopathic pulmonary fibrosis). AMs were cultured in the presence or absence of different concentrations of lipopolysaccharide (LPS), phorbolmyristate and gamma-interferon. IL-1beta, TNF-alpha, IL-6 and IL-8 levels were measured in BAL fluid and culture supernatant using specific enzyme-linked immunosorbent assays. The substance found to stimulate the secretion of inflammatory cytokines to the greatest extent was LPS at a concentration of 10 microg/ml. Regarding the secretion of IL-1beta, four observations were of interest: basal secretion was very low; LPS exerted a potent stimulatory effect; considerable within-group variability was observed; and there were no significant differences in the comparisons among groups. With respect to TNF-alpha secretion, the results were similar. The only striking finding was the higher basal secretion of this cytokine with respect to that of IL-1beta. Regarding the secretion of IL-6, the same pattern followed by TNF-alpha was found. However, it should be stressed that the increase induced by LPS was smaller than in the two previous cytokines. Regarding the secretion of IL-8, three findings were patent: the strong basal secretion of this cytokine; the moderate increase induced by LPS; and the existence of significant differences among the different groups with respect to the stimulated secretion of this cytokine, which reached maximum values in patients with idiopathic pulmonary fibrosis. Finally, it should be noted that the pattern of cytokines observed in the BAL fluid was similar to that found in cultured AM supernatants. The pattern of inflammatory cytokine secretion by AMs differs from that of other cells of the mononuclear phagocyte system (MPS). In this sense. AMs secrete low amounts of IL-1, moderate amounts of TNF-alpha and IL-6, and high quantities of IL-8. Adherence is an important stimulus in the secretion of these molecules and LPS elicits an increased secretion inverse to the basal secretion. There is considerable individual variability in the secretion of inflammatory cytokines by the AMs of patients with interstitial lung disease and the AMs of these patients are primed in vivo for the secretion of these cytokines. The results of our study, carried out in vitro, can be extrapolated to the in vivo setting.  相似文献   

4.
The functional capacity of alveolar macrophages (AM) in human immunodeficiency virus (HIV)-infected patients with pulmonary tuberculosis (TB) is not completely understood. To investigate the capacity of AM to mediate inflammatory responses, we obtained AM from human subjects by bronchoalveolar lavage (BAL) and studied the cells ex vivo. We compared AM from HIV-infected patients with suspected pulmonary TB to AM from healthy, HIV-negative controls for their capacity to produce TNF-alpha or IL-6 spontaneously and upon stimulation with lipopolysaccharide (LPS). Cytokine-producing cells were identified by macrophage markers and intracellular cytokine staining and flow cytometry. A higher proportion of AM from patients with microbiologically confirmed pulmonary TB than patients with probable TB or controls spontaneously expressed TNF-alpha shortly after isolation (geometric means: 38.5%, 23.7% and 15.8%, respectively), suggesting endogenous cytokine production. The proportions of AM spontaneously expressing TNF-alpha positively correlated with peripheral blood CD4(+) T-lymphocyte counts in patients (partial r=0.60, p=0.003) but not controls. Stimulation with LPS resulted in a significant increase in the proportions of TNF-alpha- and IL-6-positive AM from patients and controls (p<0.01). Bronchoalveolar lavage fluid (BALF) from confirmed TB patients also contained higher concentrations of the inflammatory cytokines predominantly produced by macrophages, IL-6 and IL-8, than controls (geometric mean cytokine concentrations per gram of BALF albumin were 1291 pg/g vs. 115 pg/g, p=0.03 for IL-6 and 4739 pg/g vs. 704 pg/g, p=0.03 for IL-8). We concluded that AM from HIV-infected patients with pulmonary TB produced and released inflammatory cytokines in vivo and retained their innate ability to respond to stimulation by LPS.  相似文献   

5.
6.
We have investigated gene and protein expression of ST2/ST2L in a murine alveolar macrophage (AM) cell line, MH-S, reacting to inflammatory stimuli in vitro and in the lung tissue of an acute lung injury model in vivo. We have also analyzed the effect of soluble ST2 protein on inflammatory response of MH-S cells. Lipopolysaccharide (LPS) and proinflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha induced ST2 mRNA expression in MH-S cells. In an acute lung injury model, protein and mRNA expression levels of ST2 increased to the maximal level at 24-72h after the LPS challenge. Furthermore, pretreatment with ST2 protein significantly reduced the protein production and gene expression of IL-1alpha, IL-6, and TNF-alpha in LPS-stimulated MH-S cells in vitro. These results suggest that increases in endogenous ST2 protein in AM, which is induced by inflammatory stimuli, such as LPS and proinflammatory cytokines, may modulate acute lung inflammation.  相似文献   

7.
The aim of the present study was to evaluate the anti-inflammatory activity of pre-elafin, an elastase-specific inhibitor, in lipopolysaccharide (LPS)-induced acute lung inflammation. C57BL/6 mice were pre-treated intranasally with recombinant human pre-elafin or vehicle only. One hour later, they were instilled intranasally with LPS (2 microg/mouse). Animals were sacrificed 6 hours after LPS instillation and bronchoalveolar lavage (BAL) was performed with three 1-ml aliquots of saline. LPS induced a lung inflammation characterised by a 100-fold increase in BAL neutrophils compared to control animals (265.8 +/- 54.5 x 10(3) and 2.4 +/- 1.3 x 10(3) neutrophils/ml, respectively). Pre-elafin dose-dependently reduced the neutrophil influx in the lung alveolar spaces by up to 84%. No elastase activity was detectable in all BAL fluids tested. Pre-elafin also reduced significantly LPS-induced gelatinase activity, as shown by zymography, and BAL macrophage inflammatory protein-2 (MIP-2) and KC levels, two potent neutrophil attractants and activators. Moreover, pre-elafin also significantly reduced mRNA levels of the three members of the IL-1 ligand family, namely IL-1alpha, IL-1beta and IL-1 receptor antagonist (IL-1Ra), type II IL-1 receptor, and TNFalpha as assessed in whole lung tissue by RNase protection assay. Thus, pre-elafin may be considered as a potent anti-inflammatory mediator.  相似文献   

8.
The retinoid-related orphan receptor alpha (RORalpha), a member of the ROR subfamily of nuclear receptors, has been implicated in the control of a number of physiological processes, including the regulation of several immune functions. To study the potential role of RORalpha in the regulation of innate immune responses in vivo, we analyzed the induction of airway inflammation in response to lipopolysaccharide (LPS) challenge in wild-type and staggerer (RORalpha(sg/sg)) mice, a natural mutant strain lacking RORalpha expression. Examination of hematoxylin and eosin-stained lung sections showed that RORalpha(sg/sg) mice displayed a higher degree of LPS-induced inflammation than wild-type mice. Bronchoalveolar lavage (BAL) was performed at 3, 16, and 24 h after LPS exposure to monitor the increase in inflammatory cells and the level of several cytokines/chemokines. The increased susceptibility of RORalpha(sg/sg) mice to LPS-induced airway inflammation correlated with a higher number of total cells and neutrophils in BAL fluids from LPS-treated RORalpha(sg/sg) mice compared with those from LPS-treated wild-type mice. In addition, IL-1beta, IL-6, and macrophage inflammatory protein-2 were appreciably more elevated in BAL fluids from LPS-treated RORalpha(sg/sg) mice compared with those from LPS-treated wild-type mice. The enhanced susceptibility of RORalpha(sg/sg) mice appeared not to be due to a repression of IkappaBalpha expression. Our observations indicate that RORalpha(sg/sg) mice are more susceptible to LPS-induced airway inflammation and are in agreement with the hypothesis that RORalpha functions as a negative regulator of LPS-induced inflammatory responses.  相似文献   

9.
Sarcoidosis is a systemic chronic granulomatous disease of unknown cause. Recent investigations revealed that the cytokine profile in inflamed lesions of sarcoidosis is Th1 dominant. To obtain better immunopathologic understanding of sarcoidosis, we examined the expression of IL-12 and IL-18 and their roles in IFN-gamma production in pulmonary sarcoidosis. Sarcoid cases had significantly elevated levels of IL-12 (p40 and p70) and IL-18 in bronchoalveolar lavage (BAL) fluids compared with healthy subjects. IL-12 p70 and IL-18 were immunohistochemically expressed in the epithelioid cells and giant cells of sarcoid granulomas. Significant induction of IFN-gamma, IL-12 p70, and IL-18 was observed from sarcoid BAL fluid cells with LPS stimulation, whereas LPS tended to induce only IL-12 p70 in BAL fluid cells from healthy subjects. Sarcoid cases had significantly greater IFN-gamma induction with LPS stimulation than healthy subjects did. IL-18 mRNA expression was observed in freshly isolated sarcoid BAL fluid cells as well as in LPS-stimulated sarcoid BAL fluid cells, but IFN-gamma and IL-12 mRNA expression was observed only in LPS-stimulated BAL fluid cells. Treatment with anti-IL-12- and anti-IL-18-neutralizing Abs significantly inhibited IFN-gamma production from LPS-stimulated BAL fluid cells of sarcoid cases. Coadministration of rIL-12 or rIL-18 induced greater IFN-gamma production in sarcoid BAL fluid cells than in normal BAL fluid cells. We concluded that bioactive IL-12 and IL-18 were produced in sarcoid BAL fluid cells and synergistically induced IFN-gamma production, indicating important cytokines in the Th1 response of sarcoidosis.  相似文献   

10.
目的:探讨L-精氨酸(L-Arg)对脂多糖(LPS)诱导的急性肺损伤大鼠肺表面活性物质和肺泡巨噬细胞功能的影响。方法:舌下静脉注射脂多糖(LPS)复制肺损伤模型。健康雄性SD大鼠48只,随机分为对照组、模型组(LPS组)和L-Arg治疗组(L-Arg组)(n=16)。分别于给予LPS 3 h或6 h后给予生理盐水(对照组及LPS组,ip)和L-Arg(500 mg/kg ip)(L-Arg治疗组),治疗3 h。原位杂交法(ISH)检测肺组织中肺表面活性蛋白A(SP-A)mRNA的表达;测定肺泡灌洗液(BALF)中的总蛋白(TP)。体外分离培养大鼠肺泡巨噬细胞,以LPS(终浓度10 mg/L)处理巨噬细胞,观察L-Arg对肺泡巨噬细胞的影响。结果:与对照组比较,大鼠肺损伤后SP-A mRNA表达减弱,BALF中TP增多(P<0.01)。肺损伤3 h用L-Arg治疗3 h后,SP-A mRNA阳性细胞表达明显增强,BALF中TP较LPS组相同时间点明显降低(P<0.05,P<0.01),肺损伤减轻。体外实验中,与正常对照组相比,LPS组细胞培养上清中乳酸脱氢酶(LDH)、一氧化氮(NO)、肿瘤坏死因子-α(TNFα-)和白细胞介素-6(IL-6)浓度明显增高(P<0.01);L-Arg明显减少LPS所致的LDH的释放,降低TNFα-和IL-6浓度。结论:L-Arg可减轻内毒素性肺损伤,此机制可能与增强SP-AmRNA表达有关;LPS可刺激巨噬细胞分泌促炎因子和NO,L-Arg可抑制LPS对巨噬细胞的作用。  相似文献   

11.
Mononuclear phagocytes, including alveolar macrophages (AM), can be chronically infected with HIV and thus serve as a reservoir for the virus. Acting as AC during the generation of an immune response, HIV-infected mononuclear phagocytes can facilitate viral T cell infection by several mechanisms, including direct contact of T cells with HIV-infected macrophages as well as cytokine-induced up-regulation of latent T cell infection. Our laboratory has shown that AM from HIV-infected individuals have enhanced AC function compared to normal AM. In this study we explored AM production and secretion of IL-1 beta and IL-6, two cytokines critical for optimal AC function, in normal volunteers and HIV-infected patients. Cultured AM supernatants and lysates were generated in the presence and absence of LPS and standard mitogens. In initial mixing experiments HIV AM supernatants enhanced mitogen-induced T cell proliferation using normal AM as AC significantly more than normal AM supernatants, suggesting that HIV AM secreted more T cell stimulatory factors than normal AM. Neither group could enhance T cell proliferation induced by HIV AM suggesting these cells already secreted optimal levels of these factors. AM from HIV+ individuals produced and secreted more IL-1 beta (measured by ELISA) and IL-6 (measured in a B9 bioassay and by immunoprecipitation) than normal AM both spontaneously and in the presence of low LPS concentrations and mitogens. In some cases depleting HIV AM supernatants of IL-1 beta and IL-6 on immunoaffinity columns abrogated their enhancement properties indicating that these cytokines were important in the observed enhancement. However, in other patients different factors must also be involved as depletion of IL-1 beta and IL-6 in their AM supernatants had no effect on enhancement function. These results show that HIV AM secretory products are important in the enhanced AC function demonstrated by these cells. However, although augmented IL-1 beta and IL-6 secretion likely contribute significantly to this enhancement, other AC secretory factors and/or functions must also be involved.  相似文献   

12.
Regulation of adrenomedullin secretion from cultured cells.   总被引:6,自引:0,他引:6  
Y Tomoda  Y Isumi  T Katafuchi  N Minamino 《Peptides》2001,22(11):1783-1794
Characterization of immunoreactive adrenomedullin (AM) secreted from cultured human vascular smooth muscle cells and 7 other cells indicates that AM is synthesized and secreted from all cultured cells we surveyed. The secretion rate of AM measured ranges from 0.001-6.83 fmol/10(5) cells/h, and endothelial cells, vascular smooth muscle cells and fibroblasts generally secrete AM at high rates. Based on the results of regulation of AM secretion from vascular wall cells, fibroblasts, macrophages and other cells measured in this and previous studies, AM secretion is found to be generally stimulated by inflammatory cytokines, lipopolysaccharide (LPS) and hormones. Especially, vascular smooth muscle cells and fibroblasts elicited uniform and strong stimulatory responses of AM secretion to tumor necrosis factor (TNF), interleukin-1 (IL-1), LPS and glucocorticoid, but endothelial cells did not elicit such prominent responses. AM secretion of monocyte-macrophage was mainly regulated by the degree of differentiation into macrophage and activation by LPS and inflammatory cytokines including interferon-gamma. The other examined cells showed weaker responses to LPS and IL-1. Although cultured cells may have been transformed as compared with those in the tissue, these data indicate that AM is widely synthesized and secreted from most of the cells in the body and functions as a local factor regulating inflammation and related reactions in addition to as a potent vasodilator. The responses of AM secretion to LPS and inflammatory cytokines suggest that fibroblasts, vascular smooth muscle cells and macrophage are the major sources of AM in the septic shock.  相似文献   

13.
We have previously demonstrated that mice exposed to sublethal hyperoxia (an atmosphere of >95% oxygen for 4 days, followed by return to room air) have significantly impaired pulmonary innate immune response. Alveolar macrophages (AM) from hyperoxia-exposed mice exhibit significantly diminished antimicrobial activity and markedly reduced production of inflammatory cytokines in response to stimulation with LPS compared with AM from control mice in normoxia. As a consequence of these defects, mice exposed to sublethal hyperoxia are more susceptible to lethal pneumonia with Klebsiella pneumoniae than control mice. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a growth factor produced by normal pulmonary alveolar epithelial cells that is critically involved in maintenance of normal AM function. We now report that sublethal hyperoxia in vivo leads to greatly reduced alveolar epithelial cell GM-CSF expression. Systemic treatment of mice with recombinant murine GM-CSF during hyperoxia exposure preserved AM function, as indicated by cell surface Toll-like receptor 4 expression and by inflammatory cytokine secretion following stimulation with LPS ex vivo. Treatment of hyperoxic mice with GM-CSF significantly reduced lung bacterial burden following intratracheal inoculation with K. pneumoniae, returning lung bacterial colony-forming units to the level of normoxic controls. These data point to a critical role for continuous GM-CSF activity in the lung in maintenance of normal AM function and demonstrate that lung injury due to hyperoxic stress results in significant impairment in pulmonary innate immunity through suppression of alveolar epithelial cell GM-CSF expression.  相似文献   

14.
Cystic fibrosis (CF) is a lethal, hereditary disorder characterized by a neutrophil-dominated inflammation of the lung. We sought to determine whether neutrophils from individuals with CF release more neutrophil elastase (NE) than neutrophils from normal subjects. Our results showed that peripheral blood neutrophils (PBNs) from normal subjects and individuals with CF contained similar amounts of NE, but after preincubation with CF bronchoalveolar lavage (BAL) fluid, significantly more NE was released by CF PBNs, a release that was amplified further by incubation with opsonized Escherichia coli. To determine which components of CF BAL fluid stimulated this excessive NE release from CF PBNs, we repeated the experiments after neutralization or immunoprecipitation of tumor necrosis factor (TNF)-alpha and interleukin (IL)-8 in CF BAL fluid. We found that subsequent NE release from CF PBNs was reduced significantly when TNF-alpha and IL-8 were removed from CF BAL fluid. When TNF-alpha and IL-8 were used as activating stimuli, CF PBNs released significantly greater amounts of NE compared with PBNs from control subjects and individuals with bronchiectasis. These results indicate that CF PBNs respond abnormally to TNF-alpha and IL-8 in CF BAL fluid and react to opsonized bacteria by releasing more NE. This may help explain the increased NE burden seen in this condition.  相似文献   

15.
Changes in lung macrophages during disease   总被引:1,自引:0,他引:1  
Abstract The alveolar macrophage pool is morphologically and phenotypically heterogenous. Using monoclonal antibodies, homogeneous populations were isolated from broncho-alveolar lavage for functional studies. Such investigations revealed that some alveolar macrophages exhibit phagocytic ad microbicidal capacity, thus being equipped to act as effector cells (MoAb RFD7 +), while othrs exhibit the characteristics of antigen presenting cells (MoAb RFD1 +) involved in the induction of acquired T cell responses. In the investigation of cells from sarcoid patients, a third population was revealed, exhibiting the phenotype RFD1 + and RFD7 +. Functional studies of such cells showed them to act by suppressing T-cell responsiveness. The balance between these three populations alters in different disease processes and, in the case of sarcoidosis, is related to disease severity. It is propose that changes in the balance of these populations may directly influence the pathogenesis of inflammatory lung disease.  相似文献   

16.
The alveolar macrophage pool is morphologically and phenotypically heterogeneous. Using monoclonal antibodies, homogeneous populations were isolated from broncho-alveolar lavage for functional studies. Such investigations revealed that some alveolar macrophages exhibit phagocytic and microbicidal capacity, thus being equipped to act as effector cells (MoAb RFD7+), while others exhibit the characteristics of antigen presenting cells (MoAb RFD1+) involved in the induction of acquired T cell responses. In the investigation of cells from sarcoid patients, a third population was revealed, exhibiting the phenotype RFD1+ and RFD7+. Functional studies of such cells showed them to act by suppressing T-cell responsiveness. The balance between these three populations alters in different disease processes and, in the case of sarcoidosis, is related to disease severity. It is proposed that changes in the balance of these populations may directly influence the pathogenesis of inflammatory lung disease.  相似文献   

17.
Numerous lung diseases, such as hypersensitivity pneumonitis (HP), are characterized by the presence of activated alveolar CTL and NK cells. Since these cells produce granzymes, granzyme A and B levels in bronchoalveolar lavage (BAL) fluids from 14 normal subjects and 12 patients with HP were measured by ELISA. Median (range) BAL granzyme A and B levels were 4 (0-37) and 0 (0-6) pg/ml in normal subjects. BAL granzyme levels were significantly higher in HP patients, being at 74 (0-1,889) and 10 (0-78) pg/ml for granzymes A and B, respectively. In vitro, neither of the three main serine protease inhibitors of the lung, namely alpha1-antitrypsin, secretory leukocyte protease inhibitor, and elafin, showed any effect on granzyme A or B activity. In addition, granzyme A was shown to be fully active in BAL fluids. Hence, these data show that granzyme activity may be poorly controlled by protease inhibitors in inflamed tissues. Thus, granzymes could contribute to tissue remodeling and inflammation characterizing HP.  相似文献   

18.
Complement, a complex protein system, plays an essential role in host defense through bacterial lysis, stimulation of phagocytosis, recruitment of immune cells to infected tissue, and promotion of the inflammatory response. Although complement is most well-characterized in serum, complement activity is also present in the lung. Here we further characterize the complement system in the normal and inflamed lung. By Western blot, C5, C6, and factor I were detected in bronchoalveolar lavage (BAL) at lower levels than in serum, whereas C2 was detected at similar levels in BAL and serum. C4 binding protein (C4BP) was not detectable in BAL. Exposure to lipopolysaccharide (LPS) elevated levels of C1q, factor B, C2, C4, C5, C6, and C3 in human BAL and C3, C5, and factor B in mouse and rat BAL. Message for C1q-B, C1r, C1s, C2, C4, C3, C5, C6, factor B, and factor H, but not C9 or C4BP, was readily detectable by RT-PCR in normal mouse lung. Exposure to LPS enhanced factor B expression, decreased C5 expression, and did not affect C1q-B expression in mouse and rat lung. BAL from rats exposed to LPS had a greater ability to deposit C3b onto bacteria through complement activation than did BAL from control rats. In summary, these data demonstrate that complement levels, expression, and function are altered in acute lung injury and suggest that complement within the lung is regulated to promote opsonization of pathogens and limit potentially harmful inflammation.  相似文献   

19.
Macrophage activation participates in the pathogenesis of pulmonary inflammation. As a coenzyme, vitamin B6 (VitB6) is mainly involved in the metabolism of amino acids, nucleic acids, glycogen and lipids. We have previously reported that activation of AMP-activated protein kinase (AMPK) produces anti-inflammatory effects both in vitro and in vivo. Whether VitB6 via AMPK activation prevents pulmonary inflammation remains unknown. The model of acute pneumonia was induced by injecting mice with lipopolysaccharide (LPS). The inflammation was determined by measuring the levels of interleukin-1 beta (IL-1β), IL-6 and tumour necrosis factor alpha (TNF-α) using real time PCR, ELISA and immunohistochemistry. Exposure of cultured primary macrophages to VitB6 increased AMP-activated protein kinase (AMPK) Thr172 phosphorylation in a time/dose-dependent manner, which was inhibited by compound C. VitB6 downregulated the inflammatory gene expressions including IL-1β, IL-6 and TNF-α in macrophages challenged with LPS. These effects of VitB6 were mirrored by AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). However, VitB6 was unable to inhibit LPS-induced macrophage activation if AMPK was in deficient through siRNA-mediated approaches. Further, the anti-inflammatory effects produced by VitB6 or AICAR in LPS-treated macrophages were abolished in DOK3 gene knockout (DOK3−/−) macrophages, but were enhanced in macrophages if DOK3 was overexpressed. In vivo studies indicated that administration of VitB6 remarkably inhibited LPS-induced both systemic inflammation and acute pneumonia in wild-type mice, but not in DOK3−/− mice. VitB6 prevents LPS-induced acute pulmonary inflammation in mice via the inhibition of macrophage activation.  相似文献   

20.
IL-10 is most commonly recognized as an anti-inflammatory cytokine possessing immunosuppressive effects necessary for regulated resolution of proinflammation. However, its role in the development of fibrosis during inflammatory resolution has not been clear. Few prior studies have linked IL-10 with the inhibition of fibrosis principally on the basis of regulating inflammation thought to be driving fibroproliferation. In contrast, in a model of long-term overexpression of IL-10, we observed marked induction of lung fibrosis in mice. The total cell number retrieved by bronchoalveolar lavage (BAL) increased 10-fold in the IL-10 overexpression (IL-10 OE) mice, with significant infiltration of T and B lymphocytes and collagen-producing cells. The presence of increased fibrocytes, isolated from collagenase-digested lungs, was identified by flow cytometry using dual staining of CD45 and collagen 1. Quantitative PCR analysis on an array of chemokine/chemokine receptor genes showed that receptor CCR2 and its ligand, CCL2, were highly upregulated in IL-10 OE mice, suggesting that IL-10-induced fibrocyte recruitment was CCL2/CCR2 specific. Given the prior association of alternatively activated (M(2)) macrophages with development of fibrosis in other disease states, we also examined the effect of IL-10 OE on the M(2) macrophage axis. We observed significantly increased numbers of M(2) macrophages in both BAL and whole lung tissue from the IL-10 OE mice. Administration of rabbit anti-CCL2 antiserum to IL-10 OE mice for three consecutive weeks significantly decreased fibrosis as evidenced by lung hydroxyproline content, compared with mice that received preimmune rabbit serum. These results indicate that overexpression of IL-10 induces fibrosis, in part, by fibrocyte recruitment and M(2) macrophage activation, and likely in a CCL2/CCR2 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号