首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Promotion of asparagus shoot and root growth by growth retardants   总被引:1,自引:0,他引:1  
Plantlets regenerated from shoot-tip culture of Asparagus officinalis L. possessed weak shoots and roots. Various combinations of auxins and cytokinins did not improve the plantlets. Incorporation of a number of growth retardants, viz. ancymidol, B-995, phosfon, Amo 1618, cycocel and paclobutrazol, promoted growth of stronger shoots and roots. The effectiveness of the growth retardants varied, with ancymidol being most effective and cycocel least effective.The response to ancymidol was prevented by exogenous GA3 and GA4/7. GA1/3 and GA4/7-like activities were detected in asparagus shoot-tip culture and these activities were reduced by the presence of the growth retardants ancymidol, Amo-1618, and cycocel.  相似文献   

2.
A protocol was developed for the induction, maturation and germination of somatic embryos from leaf tissue of jojoba [Simmondsia chinensis (Link) Schneider]. Explants were placed on their adaxial sides in Petri dishes and maintained in darkness on half-strength Murashige and Skoog basal medium (MS/2). Combinations of 2,4-dichlorophenoxyacetic acid (1.35–4.52 μM) with 6-benzylaminopurine (1.33–4.43μM) and 2 synthetic cytokinins, N-(2-chloro-4pyridyl)-N′-phenylurea (1.21–4.03μM) or (E)-6-[3-(trifluoromethyl)-but-2-enylamino] purine (1.11–3.71μM) resulted in formation of embryogenic cultures and somatic embryos. After two 30-day subcultures, embryogenic cultures were transferred onto MS/2 medium supplemented with different auxins and cytokinins. Somatic embryo maturation, germination and plantlet formation were achieved using 1-naphthaleneacetic acid (3.75μM) or indole-3-butyric acid (3.44μM) in combination with BA (0.44 or 1.33μM) or F3iP (0.37 or 1.11μM). Histology confirmed each stage of development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Influence of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and two ethylene inhibitors, silver nitrate (AgNO3) and cobalt chloride (CoCl2), on direct somatic embryogenesis were tested in vitro using leaf cultures of Oncidium cv. Gower Ramsey. Leaf cells of tips, adaxial sides and cut ends could directly form somatic embryos on a hormone-free 1/2-strength MS medium. The frequency of embryo-producing explants was 55, 52.5 and 30 %, respectively. The embryo numbers per embryo-producing explant was 20.3. ACC at lower concentrations (5 and 10 μM) significantly retarded direct embryo formation from cut ends. However, higher concentrations of ACC (20 and 50 μM) significantly promoted embryogenic response of leaf tips and adaxial sides. All concentrations of AgNO3 and CoCl2 significantly retarded direct embryo formation. The best response was found on 20 μM of ACC, and the frequency of embryo-producing explants were 90, 85 and 35 % on leaf tips, adaxial sides and cut ends, respectively. The embryo numbers per embryo-producing explant was 32.2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Four auxins (IAA, IBA, NAA and 2,4-D) and five cytokinins (2iP, zeatin,kinetin,BA and TDZ) were examined for their effects on direct somatic embryogenesis onleaf explantsof a sympodial orchid Oncidium 'Gower Ramsey.On a hormone-freebasal medium, the percentages of embryo formation were 40%, 20%,5% and0% on leaf tips, adaxial sides, wound surfaces and abaxial sides of theleaf explants, respectively, and the average number of embryos per explant was5.6. Embryo formation on leaf explants was retarded by all four auxins tested,but promoted by all the cytokinins. The percentages of embryo formation werereduced to 20%, 5–10%, 0% and 0%,respectively, in the same parts of leaf explants when supplemented with lowdogsages of IAA (0.3–3 mg/l) on the basal medium.Furthermore, embryo formation was totally inhibited by 3 mg/l NAA,0.3–3 mg/l IBA and 2,4-D. The sequence of embryo formationonvarious location of leaf explants was altered by 0.3–1 mg/l2iP and 3 mg/l zeatin, and embryo formation on adaxial sides>leaf tips>woundsurfaces>abaxial sides. The highest percentage of embryoformation on leaf tips, adaxial sides and wound surfaces of explants were75%, 50% and 20% when supplemented with 1mg/lTDZ, 1 mg/l 2iP and 0.3 mg/l kinetin, respectively.The highest average number of embryo per explant (10.7) was found on a basalmedium containing 1 mg/l TDZ.  相似文献   

5.
Oncidium cultivars gave different embryogenic responses of leaf explants when affected by auxins (2,4-D, IAA, IBA and NAA), cytokinins (2iP, BA, kinetin, TDZ and zeatin), sucrose, NaH2PO4, casein hydrolysate, peptone, and glutamine. The best embryogenic responses of cv. Sweet Sugar were at 20 g dm−3 sucrose, 85 mg dm−3 NaH2PO4 and 3 mg dm−3 kinetin, respectively. The development of somatic embryos on leaf explants of cv. Sweet Sugar was delayed for about 10 – 20 d in comparison with cv. Gower Ramsey. On growth regulator-free medium, about 40 % of leaf derived embryos of cv. Gower Ramsey were fused together in their basal parts and so called multiple-state embryos. However, under the same condition, the embryos of cv. Sweet Sugar were all in multiple-state form.  相似文献   

6.
The influence of light regime, explant position and orientation on direct embryo formation from leaf explants of two Phalaenopsis, P. amabilis and P. Nebula, were investigated to optimize the protocol for regenerating of this orchid. When explants were cultured in light, direct embryogenesis was retarded in both species. Embryos showed whitish to pale green in color and larger size than those cultured in darkness. Furthermore, light regime induced explant browning, embryo necrosis and eventually low plantlet conversion rate. Sixty days of culture in darkness is the most suitable duration for direct embryo induction. Explant orientation also significantly affected direct embryo formation, and explants placed adaxial-side-up on culture medium had higher embryogenic response than abaxial-side-up orientation. In both species, the cut end had highest embryogenic competence than other parts of the explant. Moreover, when the leaf explant was cut transversely into two segments, the leaf basal segment had higher embryogenic competence than the leaf tip segment.  相似文献   

7.
The effect of a homologous series of octylphenoxy surfactants, -[4-(1,1,3,3-tetramethylbutyl)phenyl]--hydroxypoly-(oxy-1,2-ethanediyl), condensed with 5, 7–8, 9–10, 16, and 30 oxyethylene (EO) units on enhancement of gibberellic acid (GA3) absorption by leaves ofPrunus cerasus cv. Montmorency was studied. Increasing EO chain length (5–30 EO) increased surface tension (27.5–35.3 mN m–1) and contact angles on adaxial (21–36°) and abaxial (28–49°) leaf surfaces. With increasing EO content, the form of GA3 deposits from droplets on the leaf surface changed from an annulus shape (5 and 7–8 EO) to globular forms covering increasingly smaller interface areas (9–10 to 30 EO). The surfactants increased GA3 uptake, the magnitude decreased with an increase in oxyethylene chain length. Similar trends were found for both the adaxial and abaxial surfaces. Penetration through the abaxial surface was linearly related to the logarithm of the oxyethylene content of the surfactant molecule (r 2=0.934**) and to the hydrophilic: lipophilic balance (r 2=0.926**). Absorption by the abaxial surface was approximately one order of magnitude greater than by the adaxial surface.  相似文献   

8.
Summary Four auxins (2,4-dichlorophenoxyacetic acid [2,4-D], indole-3-acetic acid [IAA], indole-3-butyric acid [IBA], and naphthaleneacetic acid [NAA]), and five cytokinins (N 6-[2-isopentenyl]-adenine [2iP], N 6-benzyladenine [BA], 6-furfurylaminopurine [kinetin], 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea [TDZ], and 6-[4-hydroxy-3-methylbut-2-enylamino]purine [zeatin]) were examined for their effects on direct embryo induction from leaf explants of Dendrobium cv. Chiengmai Pink cultured on 1/2 Murashige and Skoog (MS) medium. Whether in light or darkness, explants easily became necrotic and no embryos were obtained on growth regulator-free or auxin-containing media after 60 d of culture. By contrast, five cytokinins tested induced direct embryo formation from leaf explants, and explants cultured in light had a higher embryogenic response compared with those cultured in darkness. The best condition for direct embryo induction was at 18.16 μM TDZ cultured in light for 60 d, where 33% of explants formed a mean number of 33.6 embryos per explant. During subculture on growth regulator-free 1/2 MS medium, embryos gradually developed into plantlets. Secondary embryogenesis was occasionally found on sheath leaves of embryos. Regenerated plantlets were successfully transplanted and grown in a greenhouse environment.  相似文献   

9.
The ontogenetic changes in stomatal size, frequency and conductance (gs) on abaxial and adaxial leaf surfaces of sunflower plants (Helianthus annuus L. Russian Mammoth) were examined under controlled environmental conditions. The stomatal frequency on the adaxial and abaxial leaf surfaces decreased with leaf ontogeny and insertion level. The ratio of adaxial to abaxial stomatal frequency did not change with leaf ontogeny and insertion level, and 42–44% of total stomata was apportioned to the adaxial surface. Ontogenetic changes in stomatal pore length were detected and increased with ontogenesis. The stomatal length of both leaf surfaces had linear relationships with leaf area. Ontogenetic changes in gs were similar between the two surfaces. However the adaxial gs was lower than abaxial gs in leaves of higher insertion levels. Conductance had a linear relationship with width x frequency but not with pore area.  相似文献   

10.
The effect of a homologous series of octylphenoxy surfactants, α-[4-(1,1,3,3-tetramethylbutyl)phenyl]-ω-hydroxypoly-(oxy-1,2-ethanediyl), condensed with 5, 7–8, 9–10, 16, and 30 oxyethylene (EO) units on enhancement of gibberellic acid (GA3) absorption by leaves ofPrunus cerasus cv. Montmorency was studied. Increasing EO chain length (5–30 EO) increased surface tension (27.5–35.3 mN m?1) and contact angles on adaxial (21–36°) and abaxial (28–49°) leaf surfaces. With increasing EO content, the form of GA3 deposits from droplets on the leaf surface changed from an annulus shape (5 and 7–8 EO) to globular forms covering increasingly smaller interface areas (9–10 to 30 EO). The surfactants increased GA3 uptake, the magnitude decreased with an increase in oxyethylene chain length. Similar trends were found for both the adaxial and abaxial surfaces. Penetration through the abaxial surface was linearly related to the logarithm of the oxyethylene content of the surfactant molecule (r 2=0.934**) and to the hydrophilic: lipophilic balance (r 2=0.926**). Absorption by the abaxial surface was approximately one order of magnitude greater than by the adaxial surface.  相似文献   

11.
The fern Asplenium nidus L. is in great demand as an ornamental plant. The aim of this work was to investigate the influence of phytohormones in promoting a gametophytic and sporophytic growth in homogenized sporophytes tissue. Exogenous application of 0.5 and 5 μM N 6-benzyladenine, 0.05 and 0.5 μM indole-3-acetic acid (IAA), and 0.3 and 3 μM gibberellic acid (GA3) favoured sporophyte regeneration, whereas gametophyte regeneration took place when plant material was cultured in a hormone-free liquid MS medium. The endogenous contents of the auxin IAA, the cytokinins trans-zeatin, trans-zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyladenine and isopentenyladenosine, and the gibberellins GA1, GA3, GA4, GA7, GA9 and GA20 in growing gametophytes and sporophytes were evaluated. Similar levels of the auxin and cytokinins and qualitative differences in the gibberellins were found between both generations.  相似文献   

12.
Changes in gibberellins (GAs), indole-3-acetic acid (IAA), and cytokinins associated with the transition from vegetative growth to reproductive growth in Humulus lupulus L. buds and leaves harvested at fortnight intervals were studied. During vegetative growth, GA1 increased gradually and the lowest content was observed during flower development. Both GA3 and GA4 showed a dramatic increase in the samples taken from the apical part of axillary branches from plants 4–5 m high, which corresponds to the maximum vegetative development prior to macroscopically visible inflorescences. Notable increases in the cytokinins trans-zeatin (t-Z), isopentenyladenine (iP), and the riboside and ribotide forms of iP were also obtained. The auxin, indole-3-acetic acid, was the most abundant plant hormone, and its content was highest during vegetative growth. These results show for the first time a relationship between endogenous hormone profiles and both vegetative and reproductive development in hop plants, which may be relevant for future research on the control of the flowering by exogenous hormone applications.  相似文献   

13.
In Arabidopsis leaf primordia, the expression of HD‐Zip III, which promotes tissue differentiation on the adaxial side of the leaf primordia, is repressed by miRNA165/166 (miR165/166). Small RNAs, including miRNAs, can move from cell to cell. In this study, HD‐Zip III expression was strikingly repressed by miR165/166 in the epidermis and parenchyma cells on the abaxial side of the leaf primordia compared with those on the adaxial side. We also found that the MIR165A locus, which was expressed in the abaxial epidermis, was sufficient to establish the rigid repression pattern of HD‐Zip III expression in the leaf primordia. Ectopic expression analyses of MIR165A showed that the abaxial‐biased miR165 activity in the leaf primordia was formed neither by a polarized distribution of factors affecting miR165 activity nor by a physical boundary inhibiting the cell‐to‐cell movement of miRNA between the adaxial and abaxial sides. We revealed that cis‐acting factors, including the promoter, backbone, and mature miRNA sequence of MIR165A, are necessary for the abaxial‐biased activity of miR165 in the leaf primordia. We also found that the abaxial‐determining genes YABBYs are trans‐acting factors that are necessary for the miR165 activity pattern, resulting in the rigid determination of the adaxial–abaxial boundary in leaf primordia. Thus, we proposed a molecular mechanism in which the abaxial‐biased patterning of miR165 activity is confined.  相似文献   

14.
The effect of phytohormones on the breaking of dormancy of axillary buds in Salix pseudolasiogyne and their subsequent proliferation from nodal explants were examined. Nodal explants obtained from a 20–year-old S. pseudolasiogyne tree were cultured either on woody plant basal medium (WPM) or WPM supplemented with benzyladenine (BA, 2.2/4.4 μM), zeatin (1.1/2.2 μM), gibberillic acid (GA3, 2.9 and 14.5 μM), and GA3 + BA (2.9 + 4.4 μM). Although axillary shoots developed in all the media, a higher percentage bud break occurred on BA supplemented media. To corroborate the results, endogenous levels of cytokinins [Cks, N 6-isopentenyladenine (iP), zeatin riboside (t-ZR), dihydrozeatinriboside (DHZR)] and abscisic acid (ABA) were determined. On BA supplemented media, the levels of zeatin type (Z-type) of Cks were higher than those of isopentenyladenine type of Ck in the explants, while the ABA level was low. Axillary shoots did not grow well and became necrotic upon subculture to fresh basal WPM. In order to improve shoot growth, they were subcultured twice at a 4-week interval on to WPM supplemented with BA (2.2/4.4 μM), GA3 (1.4 μM), or GA3 + BA (1.4 + 4.4/2.9 + 4.4 μM). Maximal shoot growth (93%) was achieved on WPM supplemented with 2.2 μM BA. Comparative analyses of endogenous Cks revealed that higher Cks (Z-type Cks) were present in actively growing shoots. Rooting was readily achieved when the shoots were subcultured to WPM without phytohormones. The rooted plants were acclimatized well upon transplantation.  相似文献   

15.
Multiple shoots were induced on stem segments of an 8-y-old plant of Metrosideros excelsa Sol ex Gaertn. “Parnel”. Axillary shoots produced on uncontaminated explants were excised, segmented, and recultured in the same medium to increase the stock of shoot cultures. The Murashige and Skoog (MS) medium, augmented with different concentrations of 2- isopenthenyladenine (2iP) and indole-3-acetic acid (IAA), either singly or in combinations, as potential medium for shoot multiplication by nodal segments was tested. In the following experiment, equal molar concentrations of four cytokinins [2iP, kinetin, zeatin, and N 6-benzyladenine (BA)] in combination with equal molar concentrations of three auxins [IAA, α-naphthaleneacetic acid (NAA), and indole-3-butyric acid (IBA)] were tested for ability to induce axillary shoot development from single-node stem segments. The highest rate of axillary shoot proliferation was induced on MS agar medium supplemented with 1.96μM 2iP and 1.14μM IAA after 6 wk in culture. Different auxins (IAA, IBA, and NAA) were tested to determine the optimum conditions for in vitro rooting of microshoots. The best results were accomplished with IAA at 5.71μM (89% rooting) and with IBA at 2.85 or 5.71μM (86% and 86% rooting, respectively). Seventy and 90 percent of the microshoots were rooted ex vitro in bottom-heated bench (22 ± 2°C) after 2 and 4 wk, respectively. In vitro and ex vitro rooted plantlets were successfully established in soil.  相似文献   

16.
Two Phalaenopsis orchids, Phalaenopsis amabilis and Phalaenopsis ‘Nebula’, were used to test the effects of induction period (30, 45 and 60 days), subculture period (30, 45 and 60 days), and explant length (1, 1.5 and 2 cm) on direct somatic embryogenesis from different regions (leaf tip, adaxial side, abaxial side and cut end) of leaf explants from in vitro grown seedlings. The results showed that the cut end had a highest competence to form embryos than the other regions of the leaf explants from both orchids. In addition, the suitable culture conditions were 60 days for induction period in darkness, 45 days for subculture period in light and 1 cm for explant length. Besides, the combinations of N6-benzyladenine (BA) and naphthaleneacetic acid were tested on their effects on plantlet conversion and further development of leaf-derived embryo. It was found that 0.5 mg/l of BA showed the highest response on plantlet conversion rate and the lowest browning rate of explants. In this communication, the embryo structures and development were proved by scanning electron microscopy.  相似文献   

17.
The azimuth of vertical leaves of Silphium terebinthinaceum profoundly influenced total daily irradiance as well as the proportion of direct versus diffuse light incident on the adaxial and abaxial leaf surface. These differences caused structural and physiological adjustments in leaves that affected photosynthetic performance. Leaves with the adaxial surface facing East received equal daily integrated irradiance on each surface, and these leaves had similar photosynthetic rates when irradiated on either the adaxial or abaxial surface. The adaxial surface of East-facing leaves was also the only surface to receive more direct than diffuse irradiance and this was the only leaf side which had a clearly defined columnar palisade layer. A potential cost of constructing East-facing leaves with symmetrical photosynthetic capcity was a 25% higher specific leaf mass and increased leaf thickness in comparison to asymmetrical South-facing leaves. The adaxial surface of South-facing leaves received approximately three times more daily integrated irradiance than the abaxial surface. When measured at saturating CO2 and irradiance, these leaves had 42% higher photosynthetic rates when irradiated on the adaxial surface than when irradiated on the abaxial surface. However, there was no difference in photosynthesis for these leaves when irradiated on either surface when measurements were made at ambient CO2. Stomatal distribution (mean adaxial/abaxial stomatal density = 0.61) was unaffected by leaf orientation. Thus, the potential for high photosynthetic rates of adaxial palisade cells in South-facing leaves at ambient CO2 concentrations may have been constrained by stomatal limitations to gas exchange. The distribution of soluble protein and chlorophyll within leaves suggests that palisade and spongy mesophyll cells acclimated to their local light environment. The protein/chlorophyll ratio was high in the palisade layers and decreased in the spongy mesophyll cells, presumably corresponding to the attentuation of light as it penetrates leaves. Unlike some species, the chlorophyll a/b ratio and the degree of thylakoid stacking was uniform throughout the thickness of the leaf. It appears that sun-shade acclimation among cell layers of Silphium terebinthinaceum leaves is accomplished without adjustment to the chlorophyll a/b ratio or to thylakoid membrane structure.  相似文献   

18.
The existence of major vertical gradients within the leaf is often overlooked in studies of photosynthesis. These gradients, which involve light heterogeneity, cell composition, and CO2 concentration across the mesophyll, can generate differences in the maximum potential PSII efficiency (F V/F M or F V/F P) of the different cell layers. Evidence is presented for a step gradient of F V/F P ratios across the mesophyll, from the adaxial (palisade parenchyma, optimal efficiencies) to the abaxial (spongy parenchyma, sub-optimal efficiencies) side of Quercus coccifera leaves. For this purpose, light sources with different wavelengths that penetrate more or less deep within the leaf were employed, and measurements from the adaxial and abaxial sides were performed. To our knowledge, this is the first report where a low photosynthetic performance in the abaxial side of leaves is accompanied by impaired F V/F P ratios. This low photosynthetic efficiency of the abaxial side could be related to the occurrence of bundle sheath extensions, which facilitates the penetration of high light intensities deep within the mesophyll. Also, leaf morphology (twisted in shape) and orientation (with a marked angle from the horizontal plane) imply direct sunlight illumination of the abaxial side. The existence of cell layers within leaves with different photosynthetic efficiencies makes appropriate the evaluation of how light penetrates within the mesophyll when using Chl fluorescence or gas exchange techniques that use different wavelengths for excitation and/or for driving photosynthesis.  相似文献   

19.
Plant surface characteristics were repeatedly shown to play a pivotal role in plant–pathogen interactions. The abaxial leaf surface of perennial ryegrass (Lolium perenne) is extremely glossy and wettable compared to the glaucous and more hydrophobic adaxial surface. Earlier investigations have demonstrated that the abaxial leaf surface was rarely infected by powdery mildew (Blumeria graminis), even when the adaxial surface was densely colonized. This led to the assumption that components of the abaxial epicuticular leaf wax might contribute to the observed impairment of growth and development of B. graminis conidia on abaxial surfaces of L. perenne. To re-assess this hypothesis, we analyzed abundance and chemical composition of L. perenne ab- and adaxial epicuticular wax fractions. While the adaxial epicuticular waxes were dominated by primary alcohols and esters, the abaxial fraction was mainly composed of n-alkanes and aldehydes. However, the major germination and differentiation inducing compound, the C26-aldehyde n-hexacosanal, was not present in the abaxial epicuticular waxes. Spiking of isolated abaxial epicuticular Lolium waxes with synthetically produced n-hexacosanal allowed reconstituting germination and differentiation rates of B. graminis in an in vitro germination assay using wax-coated glass slides. Hence, the absence of the C26-aldehyde from the abaxial surface in combination with a distinctly reduced surface hydrophobicity appears to be primarily responsible for the failure of normal germling development of B. graminis on the abaxial leaf surfaces of L. perenne.  相似文献   

20.
Summary Somatic embryogenesis was induced in callus cultures derived from nucellar tissue of cashewnut (Anacardium occidentale L.). Callus was obtained from nucellar tissue after 3 wk of culture on semisolid Murashige and Skoog (MS) basal medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, 5 μM)+gibberellic acid (GA3, 15 μM)+N6-benzyladenine (BA, 5 μM). This callus gave rise to an embryogenic mass after 9 wk on maintenance medium containing 2,4-D (10 μM)+GA3 (15 μM)+4% sucrose +0.5% activated charcoal +10% coconut water (CW) +0.05% casein hydrolysate (CH). The embryogenic mass, after transfer to medium supplemented with 2,4-D (5 μM)+GA3 (30 μM)+4% sucrose +0.5% activated charcoal +10% CW +0.05% CH, gave rise to somatic embryos. The developmental stages of somatic embryos were observed using light and stereo microscopes. Histological study of somatic embryo development was also carried out. The present study would be useful for clonal propagation, and variety improvement in cashewnut, which is essential due to its increasing demand and export potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号