首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37oC. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm3/μm2) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi-species oral biofilm development and community composition and enhances the activity of CPC. The incorporation of LAHCl into oral healthcare products may be useful for enhanced biofilm control.  相似文献   

2.
为了阐明南美白对虾高位池养殖尾水处理系统中不同水处理阶段微生物群落演替机制, 利用16S rRNA基因高通量测序技术分析了水体和生物膜的微生物群落结构。结果显示, 在水处理系统中主要是变形菌门(Proteobacteria)、浮霉菌门(Planctomycetes)、拟杆菌门(Bacteroidetes)、蓝细菌门(Cyanobacteria)、放线菌门(Actinobacteria)及酸杆菌门(Acidobacteria), 平均占细菌总OTU的88.61%。生物膜中生物多样性指数普遍高于水样, 与水体的共有菌为320种, 载体不同是造成群落结构差异的主要原因, 黏土陶粒和北美海蓬子(Salicornia bigelovii)根系是硝化作用的主要反应场所。在属水平上筛选出160种微生物, 主要属于变形菌门、拟杆菌门、浮霉菌门、蓝细菌门、厚壁菌门(Firmicutes)及放线菌门, 它们能够较好地区分菌群的来源及水处理的反应阶段。研究揭示了不同水处理阶段以及不同生物填料中微生物动态变化情况, 为今后的海水养殖尾水处理提供理论依据和技术参考。  相似文献   

3.
In order to develop an improved method to evaluate antimicrobial agents for use in clinical dentistry, a constant-depth film fermenter (CDFF) has been used to generate biofilms of fixed depth comprising nine species of bacteria commonly found in dental plaque in health and disease. These bacteria were grown together initially in a conventional chemostat which was used to inoculate the CDFF over an 8 h period. Medium was then supplied directly to the CDFF and biofilms allowed to develop. The biofilms were then challenged with eight short pulses of two concentrations of chlorhexidine (0·0125 and 0·125% w/v). The lower concentration had a limited effect on the composition of the biofilms while a differential and substantial inhibition was obtained with a higher concentration. Actinomyces naeslundii was lost from the biofilm, and the viable counts of streptococci, Fusobacterium nucleatum and Porphyromonas gingivalis were inhibited by over three orders of magnitude by 0·125% chlorhexidine, whereas Veillonella dispar was only transiently affected. The findings were consistent with those from clinical studies of dental plaque, suggesting that this model would have a predictive value when evaluating novel antiplaque or antimicrobial inhibitors.  相似文献   

4.
Nutrient dynamics and successional changes in a lentic freshwater biofilm   总被引:3,自引:0,他引:3  
SUMMARY 1. Colonisation, species composition, succession of microalgae and nutrient dynamics in biofilms grown under light and dark conditions were examined during the initial phases of biofilm development in a lentic freshwater environment.
2. Biofilms were developed on inert (perspex) panels under natural illuminated and experimental dark conditions and the panels were retrieved for analysis after different incubation periods. Analysed parameters included biofilm thickness, algal density, biomass, chlorophyll a , species composition, total bacterial density and nutrients such as nitrite, nitrate, phosphate and silicate.
3. Biofilm thickness, algal density, biomass, chlorophyll a and species richness were significantly higher in light-grown biofilms, compared with dark-grown biofilms. The light-grown biofilms showed a three-phased succession pattern, with an initial domination of Chlorophyceae followed by diatoms (Bacillariophyceae) and finally by cyanobacteria. Dark-grown biofilms were mostly dominated by diatoms.
4. Nutrients were invariably more concentrated in biofilms than in ambient water. Nutrient concentrations were generally higher in dark-grown biofilms except in the case of phosphate, which was more concentrated in light-grown biofilms. Significant correlations between nutrients and biofilm parameters were observed only in light-grown biofilms.
5. The N : P ratio in the biofilm matrix decreased sharply in the initial 4 days of biofilm growth; ensuing N-limitation status seemed to influence biofilm community structure. The N : P ratios showed significant positive correlations with the chlorophycean fraction in both light and dark-grown biofilms, and low N : P ratio in the older biofilms favoured cyanobacteria. Our data indicate that nutrient chemistry of biofilm matrix shapes community structure in microalgal biofilms.  相似文献   

5.
Yang LH  Lee OO  Jin T  Li XC  Qian PY 《Biofouling》2006,22(1-2):23-32
Many soft-bodied sessile marine invertebrates such as sponges and soft corals defend themselves against fouling directly through the production of antifouling compounds, or indirectly through regulating the epibiotic microbes that affect larval settlement. In this study, 10beta-formamidokalihinol-A and kalihinol A were isolated and purified from the marine sponge Acanthella cavernosa (Dendy). The results indicated that both compounds inhibited the growth of bacteria isolated from the natural environment whereas kalihinol A suppressed larval settlement of a major fouling polychaete, Hydroides elegans with an EC50 of 0.5 microg ml(-1). Kalihinol A was incorporated in Phytagel that was exposed to the bacterial consortia in natural seawater for biofilm formation. Biofilms that developed on the Phytagel surfaces were analysed for bacterial abundance and bacterial species composition using a DNA fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP). The results showed that kalihinol A only slightly reduced bacterial abundance (t-test, p = 0.0497), but modified the bacterial species composition of the biofilms. Inhibition of H. elegans larval settlement was observed when biofilms developed under the influence of kalihinol A were exposed to larvae, suggesting that compounds like kalihinol A from the sponge A. cavernosa may change bacterial community composition on the sponge surface, which in turn, modulates larval settlement of fouling organisms.  相似文献   

6.
Aim: To determine the microbial composition of biofilms in domestic toilets by molecular means. Methods and Results: Genomic DNA was extracted from six biofilm samples originating from households around Düsseldorf, Germany. While no archaeal 16S rRNA or fungal ITS genes were detected by PCR, fingerprinting of bacterial 16S rRNA genes revealed a diverse community in all samples. These communities also differed considerably between the six biofilms. Using the Ribosomal Database Project (RDP) classifier tool, 275 cloned 16S rRNA gene sequences were assigned to 11 bacterial phyla and 104 bacterial genera. Only 15 genera (representing 121 sequences affiliated with Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes and Proteobacteria) occurred in at least half of the samples or contributed at least 10% of the sequences in a single biofilm. These sequences were defined as ‘typical’ for toilet biofilms, and they were examined in more detail. On a 97% sequence similarity level, these sequences represented 56 species. Twelve of these were closely related to well‐described bacterial species, and only two of them were categorized as belonging to risk group 2. No 16S rRNA genes of typical faecal bacteria were detected in any sample. Virtually all ‘typical’ clones were found to be closely related to bacteria or to sequences obtained from environmental sources, implicating that the flushing water is the main source of recruitment. Conclusion: In view of the great diversity of mostly yet‐uncultured bacteria and the considerable differences between individual toilets, very general strategies appear to be most suited for the removal and prevention of toilet biofilms. Significance and Impact of the Study: For the first time, a molecular fingerprinting and cloning approach was used to monitor the species composition in biofilm samples taken from domestic toilets. Knowledge about the microbial composition of biofilms in domestic toilets is a prerequisite for developing and evaluating strategies for their removal and prevention.  相似文献   

7.
pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit the monitoring of horizontal pH gradients in biofilms in real time. Quantitative fluorescence microscopy can overcome these problems, but none of the hitherto employed methods differentiated accurately between extracellular and intracellular microbial pH and visualized extracellular pH in all areas of the biofilms. Here, we developed a method to reliably monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4, choosing dental biofilms as an example. Fluorescent emissions of C-SNARF-4 can be used to calculate extracellular pH irrespective of the dye concentration. We showed that at pH values of <6, C-SNARF-4 stained 15 bacterial species frequently isolated from dental biofilm and visualized the entire bacterial biomass in in vivo-grown dental biofilms with unknown species composition. We then employed digital image analysis to remove the bacterial biomass from the microscopic images and adequately calculate extracellular pH values. As a proof of concept, we monitored the extracellular pH drop in in vivo-grown dental biofilms fermenting glucose. The combination of pH ratiometry with C-SNARF-4 and digital image analysis allows the accurate monitoring of extracellular pH in bacterial biofilms in three dimensions in real time and represents a significant improvement to previously employed methods of biofilm pH measurement.  相似文献   

8.
We have studied the differences in the organic matter processing and biofilm composition and structure between autoheterotrophic and heterotrophic biofilm communities. Microbial communities grown on artificial biofilms were monitored, following incubation under light and dark conditions and with or without the addition of glucose as a labile organic compound. Glucose addition greatly affected the microbial biofilm composition as shown by differences in 16S rRNA gene fingerprints. A significant increase in β-glucosidase and peptidase enzyme activities were also observed in glucose-amended biofilms incubated in the dark, suggesting an active bacterial community. Light enhanced the algal and bacterial growth, as well as higher extracellular enzyme activity, thereby indicating a tight algal–bacterial coupling in biofilms incubated under illumination. In these biofilms, organic compounds excreted by photosynthetic microorganisms were readily available for bacterial heterotrophs. This algal–bacterial relationship weakened in glucose-amended biofilms grown in the light, probably because heterotrophic bacteria preferentially use external labile compounds. These results suggest that the availability of labile organic matter in the flowing water and the presence of light may alter the biofilm composition and function, therefore affecting the processing capacity of organic matter in the stream ecosystem.  相似文献   

9.

Background

Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate.

Methodology/Principal Findings

Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours.

Conclusions/Significance

The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed insight into the pH landscape of living biofilms and contributes to our general understanding of metabolic processes in in-vivo-grown bacterial biofilms.  相似文献   

10.
The effects of protozoa (heterotrophic flagellates and ciliates) on the morphology and community composition of bacterial biofilms were tested under natural background conditions by applying size fractionation in a river bypass system. Confocal laser scanning microscopy (CLSM) was used to monitor the morphological structure of the biofilm, and fingerprinting methods (single-stranded conformation polymorphism [SSCP] and denaturing gradient gel electrophoresis [DGGE]) were utilized to assess changes in bacterial community composition. Season and internal population dynamics had a greater influence on the bacterial biofilm than the presence of protozoa. Within this general framework, bacterial area coverage and microcolony abundance were nevertheless enhanced by the presence of ciliates (but not by the presence of flagellates). We also found that the richness of bacterial operational taxonomic units was much higher in planktonic founder communities than in the ones establishing the biofilm. Within the first 2 h of colonization of an empty substrate by bacteria, the presence of flagellates additionally altered their biofilm community composition. As the biofilms matured, the number of bacterial operational taxonomic units increased when flagellates were present in high abundances. The additional presence of ciliates tended to at first reduce (days 2 to 7) and later increase (days 14 to 29) bacterial operational taxonomic unit richness. Altogether, the response of the bacterial community to protozoan grazing pressure was small compared to that reported in planktonic studies, but our findings contradict the assumption of a general grazing resistance of bacterial biofilms toward protozoa.  相似文献   

11.
环境中生物膜的菌群结构与污染物降解特性   总被引:1,自引:0,他引:1  
生物膜是细菌最常见的生长方式。结构有序、功能分化的生物膜群落为内部细菌提供在不利环境中生存的庇护,其环境功效也日益受到关注。本文综述了多种环境中微生物与不同材料表面相互作用、进而发展为生物膜的机制;介绍了环境工程领域中生物膜的先锋菌种和菌群结构动态变化;介绍了生物膜在污染环境中的抗逆与降解特性。  相似文献   

12.
Effects of epibiotic bacteria associated with macroalgae on barnacle larval attachment were investigated. Eight bacterial isolates obtained from samples of three macroalga species were cultured as monospecies bacterial films and tested for their activity against barnacle (Amphibalanus improvisus) attachment in field experiments (Western Baltic Sea). Furthermore, natural biofilm communities associated with the surface of the local brown alga, Fucus vesiculosus, which were exposed to different temperatures (5, 15 and 20?°C), were harvested and subsequently tested. Generally, monospecies bacterial biofilms, as well as natural microbial assemblages, inhibited barnacle attachment by 20-67%. denaturing gradient gel electrophoresis fingerprints showed that temperature treatment shifted the bacterial community composition and weakened the repellent effects at 20?°C. Repellent effects were absent when settlement pressure of cyprids was high. Nonviable bacteria tended to repel cyprids when compared to the unfilmed surfaces. We conclude that biofilms can have a repellent effect benefiting the host by preventing heavy fouling on its surface. However, severe settlement pressure, as well as stressful temperature, may reduce the protective effects of the alga's biofilm. Our results add to the notion that the performance of F.?vesiculosus may be reduced by multiple stressors in the course of global warming.  相似文献   

13.
Advances in microscopic analysis and molecular genetics research methods promoted the acquisition of evidence that natural bacteria populations exist predominately as substrate attached biofilms. Bacteria in biofilms are able to exchange signals and display coordinated activity that is inherent to multicellular organisms. Formation of biofilm communities turned out to be one of the main survival strategies of bacteria in their ecological niche. Bacteria in attached condition in biofilm are protected from the environmental damaging factors and effects of antibacterial substances in the environment and host organism during infection. According to contemporary conception, biofilm is a continuous layer of bacterial cells that are attached to a surface and each other, and contained in a biopolymer matrix. Such bacterial communities may be composed of bacteria of one or several species, and composed of actively functioning cells as well as latent and uncultured forms. Particular attention has recently been paid to the role of biofilms in the environment and host organism. Microorganisms form biofilm on any biotic and abiotic surfaces which creates serious problems in medicine and various areas of economic activity. Currently, it is established that biofilms are one of the pathogenetic factors of chronic inflection process formation. The review presents data on ubiquity of bacteria existence as biofilms, contemporary methods of microbial community analysis, structural-functional features of bacterial biofilms. Particular attention is paid to the role of biofilm in chronic infection process formation, heightened resistance to antibiotics of bacteria in biofilms and possible mechanisms of resistance. Screening approaches for agents against biofilms in chronic infections are discussed.  相似文献   

14.
Abstract

Conditions in dental unit waterlines are favourable for biofilm growth and contamination of dental unit water. The aim of this study was to assess the effect of several chemical disinfectants on bacteria in a biofilm model. Water-derived biofilms were grown in a static biofilm model (Amsterdam Active Attachment model), using two growth media. Biofilms were challenged with Alpron/Bilpron, Anoxyl, Citrisil, Dentosept, Green & Clean, ICX and Oxygenal in shock dose and maintenance doses. The concentration and the composition of the chemical disinfectants influenced the number of culturable bacteria in the biofilms. The application of a single shock dose followed by a low dose of the same chemical disinfectants resulted in the greatest suppression of viable bacteria in the biofilms. Exposure to Citrisil and ICX consistently resulted in failure to control the biofilms, while Alpron/Bilpron had a substantial and relevant effect on the number of bacteria in the biofilms.  相似文献   

15.
This study examined bacterial community structure of biofilms on stainless steel and polycarbonate in seawater from the Delaware Bay. Free-living bacteria in the surrounding seawater were compared to the attached bacteria during the first few weeks of biofilm growth. Surfaces exposed to seawater were analyzed by using 16S rDNA libraries, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE). Community structure of the free-living bacterial community was different from that of the attached bacteria according to FISH and DGGE. In particular, alpha-proteobacteria dominated the attached communities. Libraries of 16S rRNA genes revealed that representatives of the Rhodobacterales clade were the most abundant members of biofilm communities. Changes in community structure during biofilm growth were also examined by DGGE analysis. We hypothesized that bacterial communities on dissimilar surfaces would initially differ and become more similar over time. In contrast, the compositions of stainless steel and polycarbonate biofilms were initially the same, but differed after about 1 week of biofilm growth. These data suggest that the relationship between surface properties and biofilm community structure changes as biofilms grow on surfaces such as stainless steel and polycarbonate in estuarine water.  相似文献   

16.
A chemostat mixed culture system was used to produce two distinct ecological states, state-1 (caries-like microcosm) and state-2 (periodontal-like microcosm). Eleven bacterial species (Streptococcus gordonii, Strep. mitis I, Strep. mutans, Strep. oralis, Actinomyces naeslundii, Lactobacillus casei, Neisseria subflava, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella nigrescens, Veillonella dispar) were used to inoculate the planktonic system. A flow cell, designed to produce convergent flow with increasing shear stress, was attached to the chemostat system, and the resultant biofilms developed from the state-1 and state-2 microcosms along the shear stress gradient were examined and compared using image analysis and viable counts. The biofilm produced from state-1 showed a lower shear stress tolerance (0.146 Pa) than the state-2 biofilm (0.236 Pa). The biofilm compositions did not vary along the gradient of shear stress and were dependent on the initial inoculum conditions. Gram-positive species were predominant in the state-1 biofilm, while Gram-negative species were predominant in state-2.  相似文献   

17.
Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.  相似文献   

18.
In this study, to give insight into the bacterial diversity of biofilms from full-scale drinking water distribution systems (DWDSs), the bacterial community compositions of biofilms from two urban DWDSs (Guangzhou and Beijing, China) were determined using a 16S rRNA gene library technique. Meanwhile, the occurrence and diversity of mycobacteria were also analyzed by a Mycobacterium -specific hsp gene assay. The biofilms from the full-scale DWDSs have complex bacterial populations. Proteobacteria was the common and predominant group in all biofilm samples, in agreement with previous reports. The community structures of bacteria at the three sites in Guangzhou DWDS were significantly different, despite the similar physicochemical properties of portable water. Some abundant and peculiar bacterial phylotypes were noteworthy, including Methylophilus , Massilia, and Planomicrobium , members of which are rarely found in DWDSs and their roles in DWDS biofilms are still unclear. The diversity of Mycobacterium species in biofilm samples was rather low. Mycobacterium arupense and Mycobacterium gordonae were the primary Mycobacterium species in Guangzhou and Beijing biofilms, respectively, indicating that M. arupense may be more resistant to chloride than M. gordonae.  相似文献   

19.
This pilot study compares the compositions of bacterial biofilms in pipe networks supplied with water containing either high levels of biodegradable organic matter (BOM) or low levels of BOM (conventionally or biologically treated, respectively). The Microbial Identification System for fatty acid analysis was utilized in this study to identify a large number of organisms (>1,400) to determine population changes in both conventionally and biologically treated water and biofilms. Data generated during this study indicated that suspended bacteria have little impact on biofilms, and despite treatment (conventional or biological), suspended microbial populations were similar following disinfection. Prechlorination with free chlorine resulted not only in reduced plate count values but also in a dramatic shift in the composition of the bacterial population to predominately gram-positive bacteria. Chlorination of biologically treated water produced the same shifts toward gram-positive bacteria. Removal of assimilable organic carbon by the biologically active filters slowed the rate of biofilm accumulation, but biofilm levels were similar to those found in conventionally treated water within several weeks. Iron pipes stimulated the rate of biofilm development, and bacterial levels on disinfected iron pipes exceeded those for chlorinated polyvinyl chloride pipes. The study showed that the iron pipe surface dramatically influenced the composition, activity, and disinfection resistance of biofilm bacteria.  相似文献   

20.
The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms. pH ratiometry exploits a pH-dependent shift in the fluorescent emission of pH-sensitive dyes. Calculation of the emission ratio at two different wavelengths allows determining local pH in microscopic images, irrespective of the concentration of the dye. Contrary to microelectrodes the technique allows monitoring both vertical and horizontal pH gradients in real-time without mechanically disturbing the biofilm. However, care must be taken to differentiate accurately between extra- and intracellular compartments of the biofilm. Here, the ratiometric dye, seminaphthorhodafluor-4F 5-(and-6) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of extracellular pH. After confocal microscopic image acquisition, the bacterial biomass is removed from all pictures using digital image analysis software, which permits to exclusively calculate extracellular pH. pH ratiometry with the ratiometric dye is well-suited to study extracellular pH in thin biofilms of up to 75 µm thickness, but is limited to the pH range between 4.5 and 7.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号