首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Antisense oligonucleotides made of 2'-OMe RNA are shown to bind specifically and efficiently to targeted sites on pre-mRNA substrates, allowing affinity selection of splicing complexes using streptavidin/biotin chromatography. The position of probe binding to the pre-mRNA influences which type of splicing complex can be selected. The accessibility of pre-mRNA sequences to antisense probes changes during the course of the splicing reaction. U1, U2, U4, U5 and U6 snRNAs are all detected in affinity-selected mammalian splicing complexes. However, antisense oligonucleotides targeted to snRNAs can block the binding of specific snRNPs to pre-mRNA. Quantitative affinity selection analyses show that only a small fraction of snRNPs in a HeLa nuclear splicing extract participate in spliceosome formation.  相似文献   

5.
To examine the stability of yeast (Saccharomyces cerevisiae) pre-mRNA structures, we inserted a series of small sequence elements that generated potential RNA hairpins at the 5' splice site and branch point regions. We analyzed spliceosome assembly and splicing in vitro as well as splicing and nuclear pre-mRNA retention in vivo. Surprisingly, the inhibition of in vivo splicing approximately paralleled that of in vitro splicing. Even a 6-nucleotide hairpin could be shown to inhibit splicing, and a 15-nucleotide hairpin gave rise to almost complete inhibition. The in vitro results indicate that hairpins that sequester the 5' splice site have a major effect on the early steps of spliceosome assembly, including U1 small nuclear ribonucleoprotein binding. The in vivo experiments lead to comparable conclusions as the sequestering hairpins apparently result in the transport of pre-mRNA to the cytoplasm. The observations are compared with previous data from both yeast and mammalian systems and suggest an important effect of pre-mRNA structure on in vivo splicing.  相似文献   

6.
We have devised an in vitro splicing assay in which the mutually exclusive exons 2 and 3 of alpha-tropomyosin act as competing 3' splice sites for joining to exon 1. Splicing in normal HeLa cell nuclear extracts results in almost exclusive joining of exons 1 and 3. Splicing in decreased nuclear extract concentrations and decreased ionic strength results in increased 1-2 splicing. We have used this assay to determine the role of three constitutive pre-mRNA splicing factors on alternative 3' splice site selection. Polypyrimidine tract binding protein (PTB) was found to inhibit the splicing of introns containing a strong binding site for this factor. However, the inhibitory effect of PTB could be partially reversed if pre-mRNAs were preincubated with U2 auxiliary factor (U2AF) prior to splicing in PTB-supplemented extracts. For alpha-tropomyosin, regulation of splicing by PTB and U2AF primarily affected the joining of exons 1-3 with no dramatic increases in 1-2 splicing being detected. Preincubation of pre-mRNAs with SR proteins led to small increases in 1-2 splicing. However, if pre-mRNAs were preincubated with SR proteins followed by splicing in PTB-supplemented extracts, there was a nearly complete reversal of the normal 1-2 to 1-3 splicing ratios. Thus, multiple pairwise, and sometimes antagonizing, interactions between constitutive pre-mRNA splicing factors and the pre-mRNA can regulate 3' splice site selection.  相似文献   

7.
A physiologically important alternative pre-mRNA splicing switch, involving activation of protein 4.1R exon 16 (E16) splicing, is required for the establishment of proper mechanical integrity of the erythrocyte membrane during erythropoiesis. Here we identify a conserved exonic splicing silencer element (CE(16)) in E16 that interacts with hnRNP A/B proteins and plays a role in repression of E16 splicing during early erythropoiesis. Experiments with model pre-mRNAs showed that CE(16) can repress splicing of upstream introns, and that mutagenesis or replacement of CE(16) can relieve this inhibition. An affinity selection assay with biotinylated CE(16) RNA demonstrated specific binding of hnRNP A/B proteins. Depletion of hnRNP A/B proteins from nuclear extract significantly increased E16 inclusion, while repletion with recombinant hnRNP A/B restored E16 silencing. Most importantly, differentiating mouse erythroblasts exhibited a stage-specific activation of the E16 splicing switch in concert with a dramatic and specific down-regulation of hnRNP A/B protein expression. These findings demonstrate that natural developmental changes in hnRNP A/B proteins can effect physiologically important switches in pre-mRNA splicing.  相似文献   

8.
Recently, we identified proteins that co-purify with the human spliceosome using mass spectrometry. One of the identified proteins, CDC5L, corresponds to the human homologue of the Schizosaccharomyces pombe CDC5(+) gene product. Here we show that CDC5L is part of a larger multiprotein complex in HeLa nuclear extract that incorporates into the spliceosome in an ATP-dependent step. We also show that this complex is required for the second catalytic step of pre-mRNA splicing. Immunodepletion of the CDC5L complex from HeLa nuclear extract inhibits the formation of pre-mRNA splicing products in vitro but does not prevent spliceosome assembly. The first catalytic step of pre-mRNA splicing is less affected by immunodepleting the complex. The purified CDC5L complex in HeLa nuclear extract restores pre-mRNA splicing activity when added to extracts that have been immunodepleted using anti-CDC5L antibodies. Using mass spectrometry and database searches, the major protein components of the CDC5L complex have been identified. This work reports a first purification and characterization of a functional, human non-snRNA spliceosome subunit containing CDC5L and at least five additional protein factors.  相似文献   

9.
Pre-mRNA splicing occurs in a macromolecular complex called the spliceosome. Efforts to isolate spliceosomes from in vitro splicing reactions have been hampered by the presence of endogenous complexes that copurify with de novo spliceosomes formed on added pre-mRNA. We have found that removal of these large complexes from nuclear extracts prevents the splicing of exogenously added pre-mRNA. We therefore examined these complexes for the presence of splicing factors and proteins known or thought to be involved in RNA splicing. These fast-sedimenting structures were found to contain multiple small nuclear ribonucleoproteins (snRNPs) and a fragmented heterogeneous nuclear ribonucleoprotein complex. At least two splicing factors other than the snRNPs were also associated with these large structures. Upon incubation with ATP, these splicing factors as well as U1 and U2 snRNPs were released from these complexes. The presence of multiple splicing factors suggests that these complexes may be endogenous spliceosomes released from nuclei during preparation of splicing extracts. The removal of these structures from extracts that had been preincubated with ATP yielded a splicing extract devoid of large structures. This extract should prove useful in the fractionation of splicing factors and the isolation of native spliceosomes formed on exogenously added pre-mRNA.  相似文献   

10.
Mild heat treatment of HeLa cell nuclear extracts (NE) selectively inhibits pre-mRNA splicing. Heat-inactivated extracts can be complemented by a small amount of untreated NE. Utilizing this complementation assay and a combination of ion-exchange, affinity, and hydrophobic chromatography, a heat reversal factor (HRF) was purified from NE that is required to rescue pre-mRNA splicing from a heat-inactivated extract. This activity in its most purified form consistently copurified in a fraction containing two 70-kDa proteins and a minor polypeptide of approximately 100 kDa. It was free of the major small nuclear RNAs, sensitive to protease, and required to rescue spliceosome formation from a heat-inactivated nuclear extract. These results suggest that this factor is a protein that may be an important component in pre-mRNA splicing, or alternatively, it may be involved in renaturation of a heat-sensitive splicing factor.  相似文献   

11.
M Caputi  A Mayeda  A R Krainer    A M Zahler 《The EMBO journal》1999,18(14):4060-4067
Splicing of the human immunodeficiency virus type 1 (HIV-1) pre-mRNA must be inefficient to provide a pool of unspliced messages which encode viral proteins and serve as genomes for new virions. Negative cis-regulatory elements (exonic splicing silencers or ESSs) are necessary for HIV-1 splicing inhibition. We demonstrate that heterogeneous nuclear ribonucleoproteins (hnRNPs) of the A and B group are trans-acting factors required for the function of the tat exon 2 ESS. Depletion of hnRNP A/B proteins from HeLa cell nuclear extract activates splicing of tat exon 2 pre-mRNA substrate. Splicing inhibition is restored by addition of recombinant hnRNP A/B proteins to the depleted extract. A high-affinity hnRNP A1-binding sequence can substitute functionally for the ESS in tat exon 2. These results demonstrate that hnRNP A/B proteins are required for repression of HIV-1 splicing.  相似文献   

12.
Antisense RNA inhibits splicing of pre-mRNA in vitro.   总被引:17,自引:4,他引:13       下载免费PDF全文
S H Munroe 《The EMBO journal》1988,7(8):2523-2532
Antisense RNAs complementary to human beta-globin pre-mRNA or to a chimeric globin/adenovirus E2a pre-mRNA specifically and efficiently inhibit pre-mRNA splicing in vitro. The level of inhibition depends on the length, position and concentration of the antisense RNA relative to the pre-mRNA substrate. Antisense RNAs complementary to sequences greater than 80 nucleotides downstream of the globin 3' splice site inhibit at least as efficiently as those extending across the splice sites. Thus splicing is sensitive to perturbations involving exon sequences some distance from the splice sites. Inhibition is mediated by factors which affect the annealing of antisense and substrate RNAs. Direct analysis of RNA duplex formation demonstrates the presence of an activity in HeLa cell nuclear extract which promotes the rapid annealing of complementary RNAs in an ATP-independent manner. Both annealing and inhibition are greatly reduced when antisense RNA is added to the splicing reaction greater than or equal to 5 min after substrate. This result may reflect a transition between an open structure, in which annealing of antisense RNA with pre-mRNA is facilitated, and a closed complex in which pre-mRNA is sequestered at an early stage of spliceosome assembly.  相似文献   

13.
SMNrp, also termed SPF30, has recently been identified in spliceosomes assembled in vitro. We have functionally characterized this protein and show that it is an essential splicing factor. We show that SMNrp is a 17S U2 snRNP-associated protein that appears in the pre-spliceosome (complex A) and the mature spliceosome (complex B) during splicing. Immunodepletion of SMNrp from nuclear extract inhibits the first step of pre-mRNA splicing by preventing the formation of complex B. Re-addition of recombinant SMNrp to immunodepleted extract reconstitutes both spliceosome formation and splicing. Mutations in two domains of SMNrp, although similarly deleterious for splicing, differed in their consequences on U2 snRNP binding, suggesting that SMNrp may also engage in interactions with splicing factors other than the U2 snRNP. In agreement with this, we present evidence for an additional interaction between SMNrp and the [U4/U6.U5] tri-snRNP. A candidate that may mediate this interaction, namely the U4/U6-90 kDa protein, has been identified. We suggest that SMNrp, as a U2 snRNP-associated protein, facilitates the recruitment of the [U4/U6.U5] tri-snRNP to the pre-spliceosome.  相似文献   

14.
A R Krainer  T Maniatis 《Cell》1985,42(3):725-736
We have identified six distinct factors necessary for pre-mRNA splicing in vitro by selective inactivation and complementation studies, and by fractionation procedures. Splicing factor 1 (SF1) is sensitive to micrococcal nuclease, and appears to consist of at least U1 and U2 snRNPs, since splicing is inhibited when the 5' termini of U1 and U2 snRNAs are removed by site-directed cleavage with RNAase H. SF2 is a micrococcal nuclease-resistant factor present in the nuclear extract but absent from an S100 extract. SF3 is a factor that can be preferentially inactivated by moderate heat treatment. Two additional factors (SF4A and SF4B) were identified by fractionation of the nuclear extract using spermine-agarose and CM-sepharose chromatography. SF1, SF2, and SF4B appear to be required for cleavage of the pre-mRNA at the 5' splice site and lariat formation, whereas SF3 and SF4A are only required for cleavage at the 3' splice site and exon ligation.  相似文献   

15.
We used the yeast interaction trap system to identify a novel human 70-kDa protein, termed NS1-binding protein (NS1-BP), which interacts with the nonstructural NS1 protein of the influenza A virus. The genetic interaction was confirmed by the specific coprecipitation of the NS1 protein from solution by a glutathione S-transferase–NS1-BP fusion protein and glutathione-Sepharose. NS1-BP contains an N-terminal BTB/POZ domain and five kelch-like tandem repeat elements of ~50 amino acids. In noninfected cells, affinity-purified antibodies localized NS1-BP in nuclear regions enriched with the spliceosome assembly factor SC35, suggesting an association of NS1-BP with the cellular splicing apparatus. In influenza A virus-infected cells, NS1-BP relocalized throughout the nucleoplasm and appeared distinct from the SC35 domains, which suggests that NS1-BP function may be disturbed or altered. The addition of a truncated NS1-BP mutant protein to a HeLa cell nuclear extract efficiently inhibited pre-mRNA splicing but not spliceosome assembly. This result could be explained by a possible dominant-negative effect of the NS1-BP mutant protein and suggests a role of the wild-type NS1-BP in promoting pre-mRNA splicing. These data suggest that the inhibition of splicing by the NS1 protein may be mediated by binding to NS1-BP.  相似文献   

16.
V Gerke  J A Steitz 《Cell》1986,47(6):973-984
A HeLa cell nuclear extract active in splicing of pre-mRNA has been fractionated to identify the component that interacts with the 3' splice site. The activity that binds this region in an RNAase T1 protection assay copurifies with a 70 kd protein which is recognized by anti-Sm antibodies. Protein blots probed with labeled mRNA precursors either containing or lacking an intact 3' splice site reveal that the 70 kd polypeptide can bind pre-mRNA after immobilization on nitrocellulose and that it shows a preference for sequences located between the 3' splice junction and the site of lariat formation. Cofractionation during chromatography and immunoprecipitation by anti-2,2,7-trimethylguanosine antibodies demonstrate that the 3' splice site binding component associates with small nuclear ribonucleoprotein particles in low (1 mM) but not high (15 mM) Mg++ concentrations.  相似文献   

17.
18.
Alternative pre-messenger RNA splicing is a major contributor to proteomic diversity in higher eukaryotes and represents a key step in the control of protein function in a large variety of biological systems. As a means of artificially altering splice site choice, we have investigated the impact of positioning proteins in the vicinity of 5' splice sites. We find that a recombinant GST-MS2 protein interferes with 5' splice site use, most efficiently when it binds upstream of that site. To broaden the use of proteins as steric inhibitors of splicing, we have tested the activity of antisense oligonucleotides carrying binding sites for the heterogeneous nuclear ribonucleoprotein A1/A2 proteins. In a HeLa cell extract, tailed oligonucleotides complementary to exonic sequences elicit strong shifts in 5' splice site selection. In four different human cell lines, an interfering oligonucleotide carrying A1/A2 binding sites also shifted the alternative splicing of the Bcl-x pre-mRNA more efficiently than oligonucleotides acting through duplex formation only. The use of protein-binding oligonucleotides that interfere with U1 small nuclear ribonucleoprotein binding therefore represents a novel and powerful approach to control splice site selection in cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号