首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The effects of intercultivar substitution of individual chromosome pairs (except for 1B, 6D, and 7A) in the wheat cultivars Saratovskaya 29 and Janetzkis Probat, differing in quality, on specific lipoxygenase activity, the grain yield per spike, and the main technological properties of flour and dough were studied. It was demonstrated that the substitution of individual chromosomes of the recipient cultivar Saratovskaya 29 with the homologous chromosomes of the donor cultivar Janetzkis Probat caused significant changes in lipoxygenase activity and several other quality characteristics. The correlations between the lipoxygenase activity and the parameters of physical dough properties were determined. Three molecular forms of lipoxygenase (Lpx-1, Lpx-2, and Lpx-3), differing in the value of surface charge and enzymatic activity, were detected by native PAGE.  相似文献   

2.
Six near-isogenic lines of the wheat cultivar Saratovskaya 29 carrying five marker genes from different species (Triticum compactum L., T. polonicum L., T. petropavlovskyi Udacz. et Migusch., Aegilops elongatum Host. and Secale cereale L.) were studied. It was shown that the introduced marker genes of taxonomic significance, C and P, have strong pleiotropic effects on quantitative traits of the spike productivity.  相似文献   

3.
Genetic regulation of grain hardness and protein content in intervarietal substitution lines for chromosomes of homeologous group 5 was examined. Common wheat cultivar Saratovskaya 29 with high bread-backing properties served as the recipient. Donors of chromosomes 5A and 5D were 18 cultivars with variable traits examined, including high-protein cultivars (Atlas 66 and Diamant 2), and soft-grain cultivars (Ul’yanovka and Chinese Spring). Analysis of substitution lines pointed to a substantial effect of chromosome 5D on the regulation of both traits. It was demonstrated that as a result of intervarietal substitution for chromosome 5D from donor cultivars Ul’yanovka and Chinese Spring, the endosperm softness was increased compared to the recipient cultivar Saratovskaya 29. Substitution lines Saratovskaya 29/Atlas 66 5D and Saratovskaya 29/Diamant 2 5D were characterized by high grain protein content, as well as by high endosperm hardness. In addition, the line Saratovskaya 29/Novosibirskaya 67 5D, characterized by grain hardness higher than in Saratovskaya 29, was isolated. In the lines with intervarietal substitution of chromosome 5A, grain protein content was found to be lower than in recipient cultivar Saratovskaya 29.  相似文献   

4.
The effects of intercultivar substitution of individual chromosome pairs (except for 1B, 6D, and 7A) in the wheat cultivars Saratovskaya 29 and Janetzkis Probat, differing in quality, on specific lipoxygenase activity, the grain yield per spike, and the main technological properties of flour and dough were studied. It was demonstrated that the substitution of individual chromosomes of the recipient cultivar Saratovskaya 29 with the homologous chromosomes of the donor cultivar Janetzkis Probat caused significant changes in lipoxygenase activity and several other quality characteristics. The correlations between the lipoxygenase activity and the parameters of physical dough properties were determined. Three molecular forms of lipoxygenase (Lpx-1, Lpx-2, and Lpx-3), differing in the value of surface charge and enzymatic activity, were detected by native PAGE.  相似文献   

5.
Computer-aided image processing was used to study the morphology of leaf hairiness in the wheat cultivars Saratovskaya 29 and Golubka, as well as the introgressed line 102/00i of the cultivar Rodina carrying the gene for leaf hairiness introgressed from Aegilops speltoides. Morphological differences in leaf hairiness were detected and described in detail. The genetic control of hairiness was studied in two cultivars (Golubka and Saratovskaya 29) with similar hairiness patterns. Crossing these cultivars with the cultivar Rodina showed a monogenic inheritance in the cultivar Golubka and a digenic inheritance in the cultivar Saratovskaya 29, which has a denser hairiness. In the line 102/00i and the cultivar Golubka, the number of trichomes was positively correlated with their mean length. The cultivar Golubka was used as an example to study the effect of environmental conditions on the formation of hairiness. Plants of this cultivar were found to form more but shorter trichomes under field conditions.  相似文献   

6.
Storage proteins (prolamines, puroindolines, and Waxy) were studied in common wheat introgression lines obtained with the use of the Saratovskaya 29 (S29) cultivar line and synthetic hexaploid wheat (Triticum timopheevii Zhuk. × T. tauschii) (Sintetik, Sin.) displaying complex resistance to fungal infections. Comparative analysis of storage proteins in the introgression lines of common wheat Triticum aestivum L. and in the parental forms revealed the only line (BC5) having a substitution at the Gli-B2 locus from Sintetik. Hybrid lines subjected to nine backcrosses with the recurrent parental form S29 and selections for resistance to pathogens can be considered as nearly isogenic for the selected trait and retaining the allelic composition of (1) prolamines responsible for the bread-making qualitiy, (2) puroindolines associated with grain texture, and (3) Waxy proteins responsible for nutritive qualities. These lines are valuable as donors of immunity in breeding programs without the loss of the quality of flour and grain as compared to the S29 line and are also important in searching for genes determining resistance to leaf and stem rust and to powdery mildew. The amphiploid has a number of characters (silent Glu-A1 locus and Ha genotype) that can negatively affect the quality of flour and grain and thus should be taken into account when choosing this donor.  相似文献   

7.
Transmission of chromosomes 5R via gametes and its effect on somatic embryoidogenesis have been studied with the use of the model 5R(5A) substitution line L2837 = L503/Secale cereale L., cultivar Saratovskaya 5//L503, where L503 is a cultivar of spring bread wheat. It has been found that the frequencies of transmission of univalent chromosomes 5R and 5A determined in experiments on F1 reciprocal hybrids with cultivar Saratovskaya 29 do not reflect their frequencies in the self-pollinated offspring of F1 hybrids; the frequency of transmission of chromosomes 5R and 5A depends on the genotypes of both the recipient cultivar and the donor rye cultivar; and the 5R(5A) substitution in cultivar L503 significantly increases the parameters of somatic embryoidogenesis in vitro in explants from inflorescences.  相似文献   

8.
Ninety-five wheat microsatellite markers (WMS) were used to verify the authenticity of the set of Saratovskaya 29/Yanetzkis Probat inter-varietal wheat chromosome substitution lines developed using Saratovskaya 29 as the recipient variety. Polymorphic markers were available for all chromosome arms except 4DS, 6DS and 7DS. Each chromosome substitution line was tested by 2–8 microsatellite markers. The results demonstrate that most of the lines are correct. Out of 21 lines tested 17 showed the expected microsatellite pattern of the donor variety. Two entire chromosomes, 1B and 7A, and two chromosome arms, 3AL and 6DS, were not substituted with Yanetzkis Probat in their respective lines. Three microsatellite markers located in the distal regions of chromosome arms 4AL, 3BS and 5BL in the corresponding substitution lines did not reveal the expected microsatellite pattern of the recipient variety. The possible causes of the incorrect substitution line development and the appearance of incorrect distal microsatellite markers are discussed. The data confirm the idea that microsatellite markers provide ideal tools for testing the authenticity of genetic stocks of wheat. Received: 27 August 1999 / Accepted: 8 October 1999  相似文献   

9.
Structural alterations of chromosomes are often found in wheat-rye hybrids. In the majority of cases modifications are observed for rye chromosomes, yet chromosome aberration cases are described for wheat, including the progeny of Triticum aestivum disomic and monosomic addition lines. Since wheat-rye substitution and translocation lines are the source of rye chromatin in wheat breeding programs, the information on possible chromosome changes in the genomes of introgressive forms is important. Chromosome behavior in F1 meiosis and chromosomal composition of F2 karyotypes for double monosomics 1Rv-1A were studied by applying C-banding, genomic in situ hybridisation (GISH) using rye genomic DNA, and sequential in situ hybridization using repetitive sequences pAs1, pSc119.2 and centromere specific pAet-06 as probes. The double monosomics 1Rv-1A were obtained by crossing of disomic substitution line with chromosome 1A replaced by Secale cereale 1Rv in the bread wheat Saratovskaya 29 (S29) background with S29. The results indicated a high frequency of bipolar chromosome 1Rv orientation, as compared to 1A, at metaphase I (MI) (58.6 and 34.7 % of meiocytes, respectively), and, at anaphase I (AI), chromatid segregation of 1Rv compared to 1A (70.53 and 32.14 % of meiocytes, respectively). In few cases desynapsis of wheat homologues was observed, at AI, the chromosomes randomly distributed between the poles or underwent chromatid segregation. At AI, the two wheat homologues separated onto sister chromatids in 10.89 % of cells.The plants F2 karyotypes were marked with aneuploidy not only of chromosomes 1A and 1Rv, but also of 1D, 2D, 3D, 3B, 3A, 4A, 6D, 6B, 6A, and 7D. Structural changes were observed for the chromosomes of the first homoeologous group (1Rv, 1A, 1D, 1B), as well as for 2B, 5D, 6B, and 7B. The chromosomes 1Rv and 6B often demonstrated aberrations. The types of aberrations were centromeric break, deletions of various sizes, and a changed repeat pSc119.2 localization pattern.  相似文献   

10.
A gene determining reduced height, Rht10, from the wheat cultivar Ai-Bian 1 was introgressed into the triticale genotype. Initially, Ai-Bian 1 was crossed with the wheat cultivar Chinese Spring (CS), a carrier of Kr genes, to overcome the uncrossability of this cultivar with rye. Amphidiploids were produced by hybridizing the F2 (CS × Ai-Bian 1) plants displaying reduced height (at the level of Ai-Bian 1) with rye. Free pollination of F1 (F2 of CS × Ai-Bian 1) × Saratovskaya 7 with triticale pollen gave fertile viable hybrids; the majority of hybrids were phenotypically closer to octoploid triticale; however, the variants intermediate between octo-and hexaploids were also present. The height of amphidiploids varied from 40 to 90 cm, and the grain yield per spike amounted on the average to 11.7–24.7 grains, which exceeded essentially this value in F1 plants.  相似文献   

11.
The effect of individual rye chromosomes on the induction of callus and the character of its regenerating capacity was studied with cultured immature embryos of wheat–rye (Triticum aestivum L. cv. Saratovskaya 29–Secale cereale L. cv. Onokhoiskaya) substitution lines. The genotypic diversity of the substitution lines proved to significantly affect variation of parameters characterizing the major types of callus cultures, that is, frequencies of embryogenic calli, which are capable of shoot regeneration, and of morphogenic calli, which produce root structures. Functioning in the genotypic background of common wheat cultivar Saratovskaya 29, chromosomes 2R and 3R of rye cultivar Onokhoiskaya stimulated significantly the induction of embryogenic callus highly capable of shoot regeneration. Rye chromosome 2R present in place of chromosome 2D in the common wheat genome suppressed the induction of callus producing root structures. Rye chromosomes 1R and 6R suppressed the induction of embryogenic callus capable of shoot regeneration.  相似文献   

12.
We ran a comparative analysis of storage proteins (gliadins, high(HMW) and low-molecularweight (LMW) glutenins, puroindolines, and exogenous pest alpha-amylase inhibitors) in the Saratovskaya 29 cultivar line from the collection of a genetic engineering laboratory, its parental forms (Albidum 24 and Lutescens 55/11), and distant ancestors (Poltavka, Selivanovskiy Rusak, Sarroza, and tetraploid Beloturka). It was confirmed that the allelic states of storage proteins in the Gli-1, Gli-2 and Glu-1 loci originate from ancestral forms from the collection of the Vavilov Institute of Plant Industry. Moreover, new alleles were found in Lutescens 55/11 (Glu-A1a) and Selivanovskiy Rusak (Glu-B1b) cultivars from the collection of the Institute of Cytology and Genetics. A new allelic state, Ha, was observed in the loci of the Poltavka cultivar as a soft-grain cultivar, and the ha allele was found in the hard-grain Albidum 24 and Sarroza cultivars. It was found that the expression rate of exogenous pest alpha-amylase inhibitors in the Saratovskaya 29 cultivar line is lower than that of ancestral cultivars (Albidum 24, Sarroza, Poltavka, and Beloturka). Such inhibitors are absent in the paternal form Lutescens 55/11. A high expression rate of protein pest inhibitors for exogenous α-amylases and puroindolines was observed in the Poltavka cultivar. The allelic composition of Glu-1 loci was newly studied in the Sarroza cultivar, which has some promising features. The Saratovskaya 29 cultivar line, on the basis of which a wide range of diverse lines were created in the Institute of Cytology and Genetics, is isogenic for all of the studied traits.  相似文献   

13.
Thinopyrum elongatum serves as an excellent gene pool for wheat improvement. Genes for resistance to many biotic and abiotic stresses have been transferred from Th. elongatum to wheat through chromosome manipulation. For breeding programs, molecular markers enable screening of a large number of genotypes for alien chromosome introgressions. The main objective of the present study was to develop and characterize EST (expressed sequence tags) and PLUG (PCR-based Landmark Unique Gene) markers that can distinguish Th. elongatum chromatin from the wheat genomes. A total of 258 mapped EST primer pairs and 46 PLUG primer pairs were tested on DNA from wheat Chinese Spring (CS) and CS-Th. elongatum addition lines. The results showed that 43 primer pairs could be effectively mapped to specific Th. elongatum chromosomes. Twenty-two of the 43 markers displayed similar homoeologous chromosome locations to hexaploid wheat. Nine markers mapped to different linkage groups between wheat and Th. elongatum, while 12 makers mapped on two or three different Th. elongatum chromosomes. A comparison of molecular marker locations indicated that Th. elongatum genome was closely related to the D genome of wheat, and chromosome rearrangements and duplication had occurred in Th. elongatum and the wheat genomes. The markers will be useful in comparative gene mapping, chromosome evolutionary analysis, and gene introgression for wheat improvement using Th. elongatum accessions as gene donors.  相似文献   

14.
Understanding of the genetic basis of physiological properties, which are most relevant to water-deficit tolerance would be helpful for genomic-assisted improvement of bread wheat. A set of bread wheat inter-varietal single chromosome substitution lines (ISCSLs) of variety ‘Janetzkis Probat’ (JP) in the genetic background of ‘Saratovskaya’ 29 (S29) were used to reveal the critical chromosomes in wheat genome controlling tolerance to water deficit. The same lines were involved in the identification of chromosomes associated with the activity of antioxidant enzymes that are closely related to the detoxification of H2O2 [catalase (CAT), ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase (GR)]. The recipient cultivar S29 was highly drought tolerant while the donor JP was sensitive. Using non-metric multidimensional scaling of yield components and indices of drought tolerance/susceptibility chromosomes 2A and 4D, substitution in the genetic background of S29 was found to lead to a critical decrease of water-deficit tolerance. The drop of tolerance correlated with a sharp decline of cumulative activity of the catalase and the enzymes of ascorbate–glutathione cycle in wheat leaves. Clear evidence was obtained for the involvement of genes present on the homoeologous group 2 chromosomes in the control of GR and CAT activity. Substitution of the chromosome 4D had a significant reducing impact on the CAT activity level.  相似文献   

15.
Synthetic hexaploids are bridges for transferring new genes that determine resistance to stress factors from wild-type species to bread wheat. In the present work, the method of developing the spring bread wheat variety Pamyati Maystrenko and the results of its study are described. This variety was obtained using one of the immune lines produced earlier via the hybridization of the spring bread wheat variety Saratovskaya 29 with the synthetic hexaploid T. timopheevii Zhuk. × Ae. tauschii Coss. The C-staining of chromosomes in the Pamyati Maystrenko variety revealed substitutions of 2B and 6B chromosomes by the homeologous chromosomes of the G genome of T. timopheevii and the substitution of chromosome 1D by an orthologous chromosome of Ae. tauschii. It was found that this variety is characterized by resistance to leaf and stem rust, powdery mildew, and loose smut as well as by high grain and bread-making qualities. The role of the alien genetic material introgressed into the bread-wheat genome in the expression of adaptive and economically valuable traits in the Pamyati Maystrenko variety is discussed.  相似文献   

16.
Leaf-rust resistance and androgenesis were studied in the anther cultures of Triticum aestivum L., which included Saratovskaya 29 cultivar, the isogenic line Ps29, and three F1 hybrids (L503/S55, L504/S58, ATS7/L1063) with 7DS-7DL-7Ae#1L translocation of Lr19 gene (Lr19 translocation) from Agropyron elongatum (Host.) P.B. The Lr19 translocation was shown to affect the induction of embryogenesis and green plant regeneration. The frequencies of Lr19 translocation differed in F2 hybrids obtained by traditional hybridization and in sets of DH3 lines obtained in F1 anther cultures derived from the same combinations of T. aestivum parental forms. The number of leaf-rust resistant genotypes tended to decrease. The frequency of Lr19 translocation in the set of DH3 lines derived from F1 L504/S58 was significantly lower than in other sets of DH3 lines and F2 hybrid populations.  相似文献   

17.
Biofortification of bread wheat by the transfer of useful variability of high grain Fe and Zn from Aegilops kotschyi through induced homoeologous pairing is the most feasible approach to alleviate micronutrient malnutrition worldwide. Deficiency of chromosome 5B in interspecific hybrids allows homoeologous pairing and recombination of chromosomes of wheat with those of the related species. The interspecific hybrid plants without 5B chromosome showed much higher chromosome pairing than did the plants with 5B. The F1 plants without 5B chromosome were selected and repeatedly backcrossed with wheat cultivar PBW343. The chromosome number of BC2F1 plants ranged from 43 to 60 with several univalents and multivalents. Molecular markers and GISH analysis confirmed the introgression of U/S chromosomes of Ae. kotschyi and their fragments in wheat. The BC2F2 plants showed up to 125 % increase in Fe and 158 % increase in Zn compared to PBW343 with Lr24 and Yr36. Induced homoeologous pairing in the absence of 5B was found to be an effective approach for transfer of useful variability for enhanced grain Fe and Zn content for biofortification of wheat for high grain micronutrient content.  相似文献   

18.

Key message

We physically dissected and mapped wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum based on meiotic homoeologous recombination, providing a unique physical framework for genome studies.

Abstract

Common wheat has a large and complex genome with narrow genetic diversity and various degrees of recombination between the A, B, and D subgenomes. This has limited the homologous recombination-based genome studies in wheat. Here, we exploited meiotic homoeologous recombination for molecular mapping of wheat chromosome 2B and its homoeologue 2S from Aegilops speltoides and 2E from Thinopyrum elongatum. The 2B–2S and 2B–2E recombination was induced by the ph1b mutant, and recovered using molecular markers and fluorescent genomic in situ hybridization (FGISH). A total of 112 2B–2S and 87 2B–2E recombinants involving different chromosome regions were developed and physically delineated by FGISH. The 2B–2S and 2B–2E recombination hotspots mapped to the subterminal regions on both arms. Recombination hotspots with the highest recombination rates mapped to the short arms. Eighty-three 2B–2S and 67 2B–2E recombinants were genotyped using the wheat 90 K SNP arrays. Based on the genotyping results and FGISH patterns of the recombinants, chromosomes 2B, 2S, and 2E were partitioned into 93, 66, and 46 bins, respectively. In total, 1037 SNPs physically mapped onto distinct bins of these three homoeologous chromosomes. A homoeologous recombination-based bin map was constructed for chromosome 2B, providing a unique physical framework for genome studies in wheat and its relatives. Meiotic homoeologous recombination also facilitates gene introgression to diversify the wheat genome for germplasm development. Therefore, homoeologous recombination-based studies enhance understanding of the wheat genome and its homoeologous counterparts from wild grasses, and expand the genetic variability of the wheat genome.
  相似文献   

19.
Thinopyrum intermedium is a promising source of resistance to wheat streak mosaic virus (WSMV), a devastating disease of wheat. Three wheat germplasm lines possessing resistance to WSMV, derived from Triticum aestivum×Th. intermedium crosses, are analyzed by C-banding and genomic in situ hybridization (GISH) to determine the amount and location of alien chromatin in the transfer lines. Line CI15092 was confirmed as a disomic substitution line in which wheat chromosome 4A was replaced by Th. intermedium chromosome 4Ai?2. The other two lines, CI17766 and A29-13-3, carry an identical Robertsonian translocation chromosome in which the complete short arm of chromosome 4Ai?2 was transferred to the long arm of wheat chromosome 4A. Fluorescence in situ hybridization (FISH) using ABD genomic DNA from wheat as a probe and S genomic DNA from Pseudoroegneria stipifolia as the blocker, and vice versa, revealed that the entire short arm of the translocation was derived from the short arm of chromosome 4Ai?2 and the breakpoint was located at the centromere. Chromosomal arm ratios (L/S) of 2.12 in CI17766 and 2.15 in A29-13-3 showed that the translocated chromosome is submetacentric. This translocated chromosome is designated as T4AL?? 4Ai?2S as suggested by Friebe et al. (1991).  相似文献   

20.
Alloplasmic lines of common wheat with disomic substitution of chromosome 7D for telocentric chromosome 7H1Lmar of barley H. marinum subsp. gussoneanum Hudson were isolated from the plants of generation BC3, produced as a result of backcrossing of barley-wheat hybrids H. marinum subsp. gussoneanum (2n = 28) × T. aestivum (2n = 42), Pyrotrix, cultivar, with 28 common wheat cultivars Pyrotrix 28 and Novosibirskaya 67. Chromosome substitution pattern was determined using SSR analysis and C-banding. In preliminary genomic in situ hybridization experiments, telocentric chromosomes were assigned to wild barley was established. In the BC3F8 generations of three alloplasmic lines with the 7H1Lmar(7D) substitution type the differences in fertility manifestation were observed: most of the L-32(1) plants were sterile, in line L-32(2) only sporadic plants were sterile, and line L-32(3) was fertile. Simultaneously with these experiments, using selfpollinated progeny of the hybrids obtained in crosses of common wheat cultivar Saratovskaya 29 (2n = 41), monosomic for chromosome 7D, with common wheat cultivar Pyrotrix 28 with addition of pair of telocentric chromosomes 7H1Lmar (7D) of barley H. marinum subsp. gussoneanum, euplasmic wheat-barley ditelosomic substitution 7H1Lmar (7D) lines were isolated. The lines obtained had normal fertility. PCR analysis of the 18S/5S mitochondrial repeat (hereafter, mtDNA sequence) in alloplasmic and euplasmic ditelosomic substitution lines 7H1Lmar(7D) was performed. In the plants from alloplasmic sterile line L-32(1), the sequences only of the barley (maternal) type were revealed, while the plants from alloplasmic fertile lines L-32(2) and L-32(3) demonstrated heteroplasmy (the presence of barley- and wheat-like sequences within one individual). In euplasmic ditelosomic substitution lines the presence of only wheat-like 18S/5S mitochondrial repeat sequences was observed. The results indicate that the presence of barley-like mtDNA sequences in alloplasmic substitution lines was not associated with the presence of barley chromosomes in their nuclear genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号