共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium-independent activation of prothrombin on membranes with positively charged lipids 总被引:1,自引:0,他引:1
The activation of prothrombin by factor Xa is strongly accelerated by negatively charged phospholipids plus calcium ions. In this paper we report that positively charged membranes can also stimulate prothrombin activation provided that the activation reaction is carried out in the absence of calcium ions. Membranes composed of a mixture of phosphatidylcholine (PC) and positively charged lipids like stearylamine, sphingosine, or hexadecyltrimethylammonium bromide caused a more than 1000-fold increase of the rate of prothrombin activation. Prothrombin activation by the factor Xa-factor Va complex was also considerably stimulated by such membranes. Stimulation of prothrombin activation by positively charged membranes was suppressed at high ionic strength. This suggests that electrostatic attraction of negatively charged proteins by positively charged membranes is the major driving force in the association of prothrombin and factor Xa with the lipid surface. Calcium ions strongly inhibited prothrombin activation on vesicles composed of PC and stearylamine (80/20 M/M), which indicates that the regions of prothrombin and/or factor Xa containing gamma-carboxyglutamic acid (gla) are important for the interaction of these proteins with positively charged membranes. The importance of the gla domain was confirmed by the observation that PC/stearylamine vesicles had much less effect on the reactions between proteins that lack gla residues [gla-domainless (des-1-45) prothrombin, prethrombin 1, prethrombin 2, or gla-domainless (des-1-44) factor Xa]. The efficiency of prothrombin and prothrombin derivatives to act as substrate decreased in the order prothrombin greater than des-1-45-prothrombin = prethrombin 1 greater than prethrombin 2, while prothrombin activation by gla-domainless (des-1-44) factor Xa was hardly stimulated by positively charged membranes.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
3.
Despite the fact that thioridazine is used clinically as a neuroleptic drug, little is known about the molecular mechanisms underlying its biological effects, in particular about its interactions with membranes. In the present work we investigate the influence of thioridazine on model and cell membranes, using calorimetry, DPH fluorescence polarization measurements, studies of haemolysis and scanning electron microscopy. The experiments show that thioridazine interacts with lipid bilayers and intercalates into bilayer structure. We found that erythrocyte stomatocytosis induced by the drug might be related to preferential interaction of thioridazine with charged lipids. 相似文献
4.
Allen TW 《The Journal of general physiology》2007,130(2):237-240
5.
The effects of the position of charged amino acid side chains on the stability of the alpha-helix are investigated. Calculations for the model polyAla 13 residue alpha-helix, with modifications based on experimental work, are performed at three levels of approximation. The observed stabilization of the alpha-helix could be explained by interactions between its macrodipole and charged amino acid side chains. Limitations of the model are discussed. 相似文献
6.
A quantitative study of calcium-ion binding by the negatively-charged phospholipid methylphosphatidic acid is presented. Experimental results are compared with the predictions of the Gouy-Chapman theory, taking into account both the ions bound at the membrane surface and the ions held in the diffuse layer. This theory suffices to explain the titration of the calcium/lipid system, but fails to explain completely the behaviour of the ordered-fluid transition temperature, which shows a splitting that according to electrostatic theory alone should not occur. The dependence of the calcium-lipid binding constant. upon 1: 1 electrolyte concentration is correctly predicted by the theory; the latter however gives equations which can only be solved numerically. A simple, approximate equation is therefore given (in the text, eq. 34) for the prediction of the degree of calcium binding to a negatively-charged lipid membrane. 相似文献
7.
Charged amino acids are known to be important in controlling the actions of integral and peripheral membrane proteins and cell disrupting peptides. Atomistic molecular dynamics studies have shed much light on the mechanisms of membrane binding and translocation of charged protein groups, yet the impact of the full diversity of membrane physico-chemical properties and topologies has yet to be explored. Here we have performed a systematic study of an arginine (Arg) side chain analog moving across saturated phosphatidylcholine (PC) bilayers of variable hydrocarbon tail length from 10 to 18 carbons. For all bilayers we observe similar ion-induced defects, where Arg draws water molecules and lipid head groups into the bilayers to avoid large dehydration energy costs. The free energy profiles all exhibit sharp climbs with increasing penetration into the hydrocarbon core, with predictable shifts between bilayers of different thickness, leading to barrier reduction from 26 kcal/mol for 18 carbons to 6 kcal/mol for 10 carbons. For lipids of 10 and 12 carbons we observe narrow transmembrane pores and corresponding plateaus in the free energy profiles. Allowing for movements of the protein and side chain snorkeling, we argue that the energetic cost for burying Arg inside a thin bilayer will be small, consistent with recent experiments, also leading to a dramatic reduction in pK(a) shifts for Arg. We provide evidence that Arg translocation occurs via an ion-induced defect mechanism, except in thick bilayers (of at least 18 carbons) where solubility-diffusion becomes energetically favored. Our findings shed light on the mechanisms of ion movement through membranes of varying composition, with implications for a range of charged protein-lipid interactions and the actions of cell-perturbing peptides. This article is part of a Special Issue entitled: Membrane protein structure and function. 相似文献
8.
9.
10.
Lipid protein interactions in cellular membranes 总被引:10,自引:0,他引:10
11.
The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of cells. 相似文献
12.
Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes
下载免费PDF全文

The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is saturated by adsorbed proteins), the membrane charges are overcompensated by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic. 相似文献
13.
Charged lipid membranes of dimyristoylmethylphosphatidic acid were mixed rapidly in a stopped-flow cell with protons or Ca2+ to compensate the charges and thereby trigger the ordered-fluid phase transition. The kinetics of the transition was studied by following the time development of the fluorescence anisotropy of diphenylhexatriene. A relaxation process was observed with a characteristic time in the range 10–200 ms. By comparison with existing theories of non-equilibrium relaxation it was concluded that the relaxation process is governed by a nucleation step. 相似文献
14.
15.
16.
Functional interactions of lipids and proteins in rat intestinal microvillus membranes. 总被引:1,自引:0,他引:1
Interactions of lipids and proteins in isolated rat intestinal microvillus membranes were examined by studying the temperature dependence of enzyme activities and of D-glucose transport in relation to the membrane lipid thermotropic transition observed by fluorescence polarization (26 +/- 2 degrees C) and differential scanning calorimetry (23--39 degrees C). Two groups of activities were defined. Enzymes of the first group, comprising lactase, maltase, sucrase, leucine aminopeptidase, and gamma-glutamyl transpeptidase, all yielded a single slope on the Arrhenius plot in the range 10--40 degrees C and did not appear to experience functionally the effects of the lipid thermotropic transition. Each activity of the second group, comprising calcium- and magnesium-dependent adenosine triphosphatases, p-nitrophenylphosphatase, and D-glucose transport, showed a change in the slope of the Arrhenius plot in the range 25--30 degrees C, corresponding to the lower region of the lipid transition. The terms "extrinsic" and "intrinsic" activities could be applied to these groups. Delipidation of the particulate p-nitrophenylphosphatase removed the discontinuity in the Arrhenius plot. Subsequent relipidation with a variety of lipids restored a break point, but the temperature corresponded to the original discontinuity (25--29 degrees C) rather than to the phase transition temperature of the exogenous lipid added. 相似文献
17.
B S Vallée P Tauc J C Brochon R Maget-Dana D Lelièvre M H Metz-Boutigue N Bureaud F Schoentgen 《European journal of biochemistry》2001,268(22):5831-5841
The ability of phosphatidylethanolamine-binding protein (PEBP) to bind membranes was tested by using small and large unilamellar vesicles and monolayers composed of l-alpha-1,2-dimyristoylphosphatidylcholine, l-alpha-1,2-dimyristoylphosphatidylglycerol and l-alpha-1,2-dimyristoylphosphatidylethanolamine. PEBP only bound to model membranes containing l-alpha-1,2-dimyristoylphosphatidylglycerol; the interaction was primarily due to electrostatic forces between the basic protein and the acidic phospholipids. Further experiments indicated that the interaction was not dependent on the length and unsaturation of the phospholipid acyl chains and was not modified by the presence of cholesterol in the membrane. PEBP affinity for negatively charged membranes is puzzling considering the previous identification of the protein as a phosphatidylethanolamine-binding protein, and suggests that the association of PEBP with phospholipid membranes is driven by a mechanism other than its binding to solubilized phosphatidylethanolamine. An explanation was suggested by its three-dimensional structure: a small cavity at the protein surface has been reported to be the binding site of the polar head of phosphatidylethanolamine, while the N-terminal and C-terminal parts of PEBP, exposed at the protein surface, appear to be involved in the interaction with membranes. To test this hypothesis, we synthesized the two PEBP terminal regions and tested them with model membranes in parallel with the whole protein. Both peptides displayed the same behaviour as whole PEBP, indicating that they could participate in the binding of PEBP to membranes. Our results strongly suggest that PEBP directly interacts with negatively charged membrane microdomains in living cells. 相似文献
18.
Prothrombin activation on membranes with anionic lipids containing phosphate, sulfate, and/or carboxyl groups 总被引:4,自引:0,他引:4
Factor Xa catalyzed prothrombin activation is strongly stimulated by the presence of negatively charged membranes plus calcium ions. Here we report experiments in which we determined the prothrombin-converting activity of phosphatidylcholine (PC) membranes that contain varying amounts of different anionic lipids, viz., phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylmethanol (MePA), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidyl-beta-lactate (PLac), sulfatides (SF), sodium dodecyl sulfate (SDS), and oleic acid. All anionic lipids tested were able to accelerate factor Xa catalyzed prothrombin activation, in both the absence and presence of the protein cofactor Va. This shows that the prothrombin-converting activity of negatively charged membranes is not strictly dependent on the presence of a phosphate group but that lipids which contain a carboxyl or sulfate moiety are also able to promote the formation of a functionally active prothrombinase complex. In the absence of factor Va, the prothrombin-converting activity of membranes with MePA, PG, PE, PLac, SF, or SDS was strongly inhibited at high ionic strength, while the activity of PS- and PA-containing membranes was hardly affected by ionic strength variation. This suggests that in the case of the ionic strength sensitive lipids electrostatic forces play an important role in the formation of the membrane-bound prothrombinase complex. For PS and to a lesser extent for PA we propose that the formation of a coordinated complex (chelate complex) with Ca2+ as central ion and ligands provided by the gamma-carboxyglutamic acid residues of prothrombin and factor Xa and the polar head group of phospholipids is the major driving force in protein-membrane association. Our data indicate that the anionic lipids used in this study can be useful tools for further investigation of the molecular interactions that play a role in the assembly of a membrane-bound prothrombinase complex. Membranes that were solely composed of PC can also considerably enhance prothrombin activation in the presence of factor Va. This activity of PC is only observed on membranes which are composed of PC that contains unsaturated hydrocarbon side chains. Membranes prepared from phosphocholine-containing lipids with saturated hydrocarbon side chains such as dimyristoyl-PC, dipalmitoyl-PC, distearoyl-PC, and dioctadecylglycerophosphocholine hardly accelerated prothrombin activation.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
L A Fishbe?n 《Biofizika》1989,34(5):785-791
In terms of the Landau thermodynamic expansion the model of lipid-protein interaction is considered for the case of relatively low protein concentrations. It is established that the proteins inserted into the lipid membrane can change its phase transition temperature. The expression determining the region size of the "boundary" lipids is obtained and the connection between the ordering extent of the "boundary" lipids and the sign and the value of the temperature shift of the phase transition is calculated. 相似文献
20.
The elaborate compartmentalization of plant cells requires multiple mechanisms of protein targeting and trafficking. In addition to the organelles found in all eukaryotes, the plant cell contains a semi-autonomous organelle, the plastid. The plastid is not only the most active site of protein transport in the cell, but with its three membranes and three aqueous compartments, it also represents the most topologically complex organelle in the cell. The chloroplast contains both a protein import system in the envelope and multiple protein export systems in the thylakoid. Although significant advances have identified several proteinaceous components of the protein import and export apparatuses, the lipids found within plastid membranes are also emerging as important players in the targeting, insertion, and assembly of proteins in plastid membranes. The apparent affinity of chloroplast transit peptides for chloroplast lipids and the tendency for unsaturated MGDG to adopt a hexagonal II phase organization are discussed as possible mechanisms for initiating the binding and/or translocation of precursors to plastid membranes. Other important roles for lipids in plastid biogenesis are addressed, including the spontaneous insertion of proteins into the outer envelope and thylakoid, the role of cubic lipid structures in targeting and assembly of proteins to the prolamellar body, and the repair process of D1 after photoinhibition. The current progress in the identification of the genes and their associated mutations in galactolipid biosynthesis is discussed. Finally, the potential role of plastid-derived tubules in facilitating macromolecular transport between plastids and other cellular organelles is discussed. 相似文献