首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Park J  Park DC  Polk TA 《PloS one》2012,7(2):e31512
The visual word form area (VWFA) is a region of left inferior occipitotemporal cortex that is critically involved in visual word recognition. Previous studies have investigated whether and how experience shapes the functional characteristics of VWFA by comparing neural response magnitude in response to words and nonwords. Conflicting results have been obtained, however, perhaps because response magnitude can be influenced by other factors such as attention. In this study, we measured neural activity in monozygotic twins, using functional magnetic resonance imaging. This allowed us to quantify differences in unique environmental contributions to neural activation evoked by words, pseudowords, consonant strings, and false fonts in the VWFA and striate cortex. The results demonstrate significantly greater effects of unique environment in the word and pseudoword conditions compared to the consonant string and false font conditions both in VWFA and in left striate cortex. These findings provide direct evidence for environmental contributions to the neural architecture for reading, and suggest that learning phonology and/or orthographic patterns plays the biggest role in shaping that architecture.  相似文献   

2.
Models of the "visual word form system" postulate that a left occipitotemporal region implements the automatic visual word recognition required for efficient reading. This theory was assessed in a patient in whom reading was explored with behavioral measures, fMRI, and intracranial local field potentials. Prior to surgery, when reading was normal, fMRI revealed a normal mosaic of ventral visual selectivity for words, faces, houses, and tools. Intracranial recordings demonstrated that the left occipitotemporal cortex responded with a short latency to conscious but also to subliminal words. Surgery removed a small portion of word-responsive occipitotemporal cortex overlapping with the word-specific fMRI activation. The patient developed a marked reading deficit, while recognition of other visual categories remained intact. Furthermore, in the post-surgery fMRI map of visual cortex, only word-specific activations disappeared. Altogether, these results provide direct evidence for the causal role of the left occipitotemporal cortex in the recognition of visual words.  相似文献   

3.

Background

It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question.

Methodology/Principal Findings

MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100–250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at ∼130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at ∼115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at ∼140 ms, at a location coincident with the fMRI–defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus.

Conclusions/Significance

These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.  相似文献   

4.
Retrograde transsynaptic transport of rabies virus was employed to undertake the top-down projections from the medial temporal lobe (MTL) to visual area V4 of the occipitotemporal visual pathway in Japanese monkeys (Macaca fuscata). On day 3 after rabies injections into V4, neuronal labeling was observed prominently in the temporal lobe areas that have direct connections with V4, including area TF of the parahippocampal cortex. Furthermore, conspicuous neuron labeling appeared disynaptically in area TH of the parahippocampal cortex, and areas 35 and 36 of the perirhinal cortex. The labeled neurons were located predominantly in deep layers. On day 4 after the rabies injections, labeled neurons were found in the hippocampal formation, along with massive labeling in the parahippocampal and perirhinal cortices. In the hippocampal formation, the densest neuron labeling was seen in layer 5 of the entorhinal cortex, and a small but certain number of neurons were labeled in other regions, such as the subicular complex and CA1 and CA3 of the hippocampus proper. The present results indicate that V4 receives major input from the hippocampus proper via the entorhinal cortex, as well as “short-cut” pathways that bypass the entorhinal cortex. These multisynaptic pathways may define an anatomical basis for hippocampal-cortical interactions involving lower visual areas. The multisynaptic input from the MTL to V4 is likely to provide mnemonic information about object recognition that is accomplished through the occipitotemporal pathway.  相似文献   

5.
Brain regions in the intraparietal and the premotor cortices selectively process visual and multisensory events near the hands (peri-hand space). Visual information from the hand itself modulates this processing potentially because it is used to estimate the location of one’s own body and the surrounding space. In humans specific occipitotemporal areas process visual information of specific body parts such as hands. Here we used an fMRI block-design to investigate if anterior intraparietal and ventral premotor ‘peri-hand areas’ exhibit selective responses to viewing images of hands and viewing specific hand orientations. Furthermore, we investigated if the occipitotemporal ‘hand area’ is sensitive to viewed hand orientation. Our findings demonstrate increased BOLD responses in the left anterior intraparietal area when participants viewed hands and feet as compared to faces and objects. Anterior intraparietal and also occipitotemporal areas in the left hemisphere exhibited response preferences for viewing right hands with orientations commonly viewed for one’s own hand as compared to uncommon own hand orientations. Our results indicate that both anterior intraparietal and occipitotemporal areas encode visual limb-specific shape and orientation information.  相似文献   

6.
In the work reported here, we set out to study the neural systems that detect predictable temporal patterns and departures from them. We used functional magnetic resonance imaging (fMRI) to locate activity in the brains of subjects when they viewed temporally regular and irregular patterns produced by letters, numbers, colors and luminance. Activity induced by irregular sequences was located within dorsolateral prefrontal cortex, including an area that was responsive to irregular patterns regardless of the type of visual stimuli producing them. Conversely, temporally regular arrangements resulted in activity in the right frontal lobe (medial frontal gyrus), in the left orbito-frontal cortex and in the left pallidum. The results show that there is an abstractive system in the brain for detecting temporal irregularity, regardless of the source producing it.  相似文献   

7.
8.
Luo B  Shan C  Zhu R  Weng X  He S 《PloS one》2011,6(8):e23997
It remains controversial and hotly debated whether foveal information is double-projected to both hemispheres or split at the midline between the two hemispheres. We investigated this issue in a unique patient with lesions in the splenium of the corpus callosum and the left medial occipitotemporal region, through a series of neuropsychological tests and multimodal MRI scans. Behavioral experiments showed that (1) the patient had difficulties in reading simple and compound Chinese characters when they were presented in the foveal but left to the fixation, (2) he failed to recognize the left component of compound characters when the compound characters were presented in the central foveal field, (3) his judgments of the gender of centrally presented chimeric faces were exclusively based on the left half-face and he was unaware that the faces were chimeric. Functional MRI data showed that Chinese characters, only when presented in the right foveal field but not in the left foveal field, activated a region in the left occipitotemporal sulcus in the mid-fusiform, which is recognized as visual word form area. Together with existing evidence in the literature, results of the current study suggest that the representation of foveal stimuli is functionally split at object processing levels.  相似文献   

9.
Konkle T  Oliva A 《Neuron》2012,74(6):1114-1124
While there are selective regions of occipitotemporal cortex that respond to faces, letters, and bodies, the large-scale neural organization of most object categories remains unknown. Here, we find that object representations can be differentiated along the ventral temporal cortex by their real-world size. In a functional neuroimaging experiment, observers were shown pictures of big and small real-world objects (e.g., table, bathtub; paperclip, cup), presented at the same retinal size. We observed a consistent medial-to-lateral organization of big and small object preferences in the ventral temporal cortex, mirrored along the lateral surface. Regions in the lateral-occipital, inferotemporal, and parahippocampal cortices showed strong peaks of differential real-world size selectivity and maintained these preferences over changes in retinal size and in mental imagery. These data demonstrate that the real-world size of objects can provide insight into the spatial topography of object representation.  相似文献   

10.
Expertise in recognizing objects in cluttered scenes is a critical skill for our interactions in complex environments and is thought to develop with learning. However, the neural implementation of object learning across stages of visual analysis in the human brain remains largely unknown. Using combined psychophysics and functional magnetic resonance imaging (fMRI), we show a link between shape-specific learning in cluttered scenes and distributed neuronal plasticity in the human visual cortex. We report stronger fMRI responses for trained than untrained shapes across early and higher visual areas when observers learned to detect low-salience shapes in noisy backgrounds. However, training with high-salience pop-out targets resulted in lower fMRI responses for trained than untrained shapes in higher occipitotemporal areas. These findings suggest that learning of camouflaged shapes is mediated by increasing neural sensitivity across visual areas to bolster target segmentation and feature integration. In contrast, learning of prominent pop-out shapes is mediated by associations at higher occipitotemporal areas that support sparser coding of the critical features for target recognition. We propose that the human brain learns novel objects in complex scenes by reorganizing shape processing across visual areas, while taking advantage of natural image correlations that determine the distinctiveness of target shapes.  相似文献   

11.
Children often make letter reversal errors when first learning to read and write, even for letters whose reversed forms do not appear in normal print. However, the brain basis of such letter reversal in children learning to read is unknown. The present study compared the neuroanatomical correlates (via functional magnetic resonance imaging) and the electrophysiological correlates (via event-related potentials or ERPs) of this phenomenon in children, ages 5–12, relative to young adults. When viewing reversed letters relative to typically oriented letters, adults exhibited widespread occipital, parietal, and temporal lobe activations, including activation in the functionally localized visual word form area (VWFA) in left occipito-temporal cortex. Adults exhibited significantly greater activation than children in all of these regions; children only exhibited such activation in a limited frontal region. Similarly, on the P1 and N170 ERP components, adults exhibited significantly greater differences between typical and reversed letters than children, who failed to exhibit significant differences between typical and reversed letters. These findings indicate that adults distinguish typical and reversed letters in the early stages of specialized brain processing of print, but that children do not recognize this distinction during the early stages of processing. Specialized brain processes responsible for early stages of letter perception that distinguish between typical and reversed letters may develop slowly and remain immature even in older children who no longer produce letter reversals in their writing.  相似文献   

12.
The hypothesis that ventral/anterior left inferior frontal gyrus (LIFG) subserves semantic processing and dorsal/posterior LIFG subserves phonological processing was tested by determining the pattern of functional connectivity of these regions with regions in left occipital and temporal cortex during the processing of words and word-like stimuli. In accordance with the hypothesis, we found strong functional connectivity between activity in ventral LIFG and activity in occipital and temporal cortex only for words, and strong functional connectivity between activity in dorsal LIFG and activity in occipital and temporal cortex for words, pseudowords, and letter strings, but not for false font strings. These results demonstrate a task-dependent functional fractionation of the LIFG in terms of its functional links with posterior brain areas.  相似文献   

13.
14.
In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure–function relationships, which can be tested by manipulating the time-scales of sensory input.  相似文献   

15.
Functional magnetic resonance imaging indicates that observation of the human body induces a selective activation of a lateral occipitotemporal cortical area called extrastriate body area (EBA). This area is responsive to static and moving images of the human body and parts of it, but it is insensitive to faces and stimulus categories unrelated to the human body. With event-related repetitive transcranial magnetic stimulation, we tested the possible causal relation between neural activity in EBA and visual processing of body-related, nonfacial stimuli. Facial and noncorporeal stimuli were used as a control. Interference with neural activity in EBA induced a clear impairment, consisting of a significant increase in discriminative reaction time, in the visual processing of body parts. The effect was selective for stimulus type, because it affected responses to nonfacial body stimuli but not to noncorporeal and facial stimuli, and for locus of stimulation, because the effect from the interfering stimulation of EBA was absent during a corresponding stimulation of primary visual cortex. The results provide strong evidence that neural activity in EBA is not only correlated with but also causally involved in the visual processing of the human body and its parts, except the face.  相似文献   

16.
The present functional magnetic resonance imaging study provides direct evidence on visual object-category formation in the human brain. Although brain imaging has demonstrated object-category specific representations in the occipitotemporal cortex, the crucial question of how the brain acquires this knowledge has remained unresolved. We designed a stimulus set consisting of six highly similar bird types that can hardly be distinguished without training. All bird types were morphed with one another to create different exemplars of each category. After visual training, fMRI showed that responses in the right fusiform gyrus were larger for bird types for which a discrete category-boundary was established as compared with not-trained bird types. Importantly, compared with not-trained bird types, right fusiform responses were smaller for visually similar birds to which subjects were exposed during training but for which no category-boundary was learned. These data provide evidence for experience-induced shaping of occipitotemporal responses that are involved in category learning in the human brain.  相似文献   

17.
Magnetic coil (MC) stimulation percutaneously of human occipital cortex was tested on perception of 3 briefly presented, randomly generated alphabetical characters. When the visual stimulus-MC pulse interval was less than 40–60 msec, or more than 120–140 msec, letters were correctly reported; at test intervals of 80–100 msec, a blur or nothing was seen. Shifting the MC location in the transverse and rostro-caudal axes had effects consistent with the topographical representation in visual cortex, but incompatible with an effect on attention or suppression from an eyeblink. The MC pulse probably acts by eliciting IPSPs in visual stimulus.  相似文献   

18.
The purpose of the present study was to examine hemispheric differences in visual recognition of two kanji letters. Kanji phrases and nonsense kanji letters were presented unilaterally to the left or right visual hemifield in thirty normal right-handed men by a tachistoscope. The experiments were separated into three conditions; the mixing tasks (ten phrases and ten sets of nonsense letters are presented by mixture), the phase task (twenty phrases are presented), and the nonsense letters task (twenty sets of nonsense letters are presented). Under all conditions, significant right visual hemifield superiorities for the accuracy of recognition of phrase and nonsense letters were observed.  相似文献   

19.
The role of early visual experience in the establishment of human high-order visual areas is poorly understood. Here we investigated this issue using human amblyopia--a developmental visual disorder, which manifests a central vision (acuity) deficit. Previous fMRI studies of amblyopes have described abnormal functional activations in early retinotopic areas. Here we report the surprising finding of a selective object-related abnormality in high-order occipitotemporal cortex. Specifically, we found that face-related cortical areas show a severe disconnection from the amblyopic eye, while building-related regions remain essentially normal. The selectivity of the deficit highlights the differential computations performed in the different object-related areas and is compatible with the suggested association of face regions with analysis of fine detail.  相似文献   

20.
Orlov T  Makin TR  Zohary E 《Neuron》2010,68(3):586-600
Large-scale topographic representations of the body have long been established in the somatosensory and motor cortices. Using functional imaging, we identified a topographically organized body part map within the occipitotemporal cortex (OTC), with distinct clusters of voxels showing clear preference for different visually presented body parts. This representation was consistent both across hemispheres and participants. Using converging methods, the preference for specific body parts was demonstrated to be robust and did not merely reflect shape differences between the categories. Finally, execution of (unseen) movements with different body parts resulted in a limited topographic representation of the limbs and trunk, which partially overlapped with the visual body part map. This motor-driven activation in the OTC could not be explained solely by visual or motor imagery of the body parts. This suggests that visual and motor-related information converge within the OTC in a body part specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号