首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differing activities of medullary respiratory neurons in eupnea and gasping   总被引:1,自引:0,他引:1  
Our purpose was to compare further eupneic ventilatory activity with that of gasping. Decerebrate, paralyzed, and ventilated cats were used; the vagi were sectioned within the thorax caudal to the laryngeal branches. Activities of the phrenic nerve and medullary respiratory neurons were recorded. Antidromic invasion was used to define bulbospinal, laryngeal, or not antidromically activated units. The ventilatory pattern was reversibly altered to gasping by exposure to 1% carbon monoxide in air. In eupnea, activities of inspiratory neurons commenced at various times during inspiration, and for most the discharge frequency gradually increased. In gasping, the peak discharge frequency of inspiratory neurons was unaltered. However, all commenced activities at the start of the phrenic burst and reached peak discharge almost immediately. The discharge frequencies of all groups of expiratory neurons fell in gasping, with many neurons ceasing activity entirely. These data are consistent with the hypothesis that brain stem mechanisms controlling eupnea and gasping differ fundamentally.  相似文献   

2.
The purpose of this study was to assess the influence of pulmonary inflations on activities of single phrenic motoneurons. Studies were performed in decerebrate and paralyzed cats; activities of phrenic nerve and single phrenic motoneurons were recorded. Animals were ventilated with a servo-respirator which produced alterations in tracheal pressure in parallel with changes in integrated activity of the phrenic nerve. At end-tidal fractional concentrations of CO2 of 0.05, phrenic motoneurons were distributed into "early" and "late" populations, depending on time of onset of activity. During the late stages of neural inspiration, differences in levels of integrated activity of the phrenic nerve became evident between cycles with and without lung inflations. At a time approximating 90% of the inspiratory duration during inflations, integrated phrenic activity was higher for cycles with inflation. Concomitantly, with lung inflations, the discharge frequencies of early phrenic motoneurons were lower, and late motoneurons began to discharge sooner than when inflations were withheld. Similar results were obtained in hypercapnia. We conclude that reflexes activated by pulmonary inflations may produce augmentation, as well as inhibition of phrenic motoneuronal activities. Factors responsible for eliciting these reflex augmentations and inhibitions are discussed.  相似文献   

3.
Expiratory neural activities in gasping   总被引:3,自引:0,他引:3  
The purpose was to characterize expiratory-related neural activities in eupnea and gasping. In decerebrate and vagotomized cats, activities were recorded from the phrenic nerve, spinal intercostal and abdominal nerves, and recurrent laryngeal nerve and its branches. Neural inspiration was defined by phrenic discharge. The spinal and laryngeal nerves discharged in inspiration, expiration, or during both phases. Gasping was induced by freezing the brain stem at the pontomedullary junction, exposure to asphyxia or anoxia, or ligation of the basilar artery and its branches. In gasping, peak phrenic activity typically increased as did inspiratory-related activities of laryngeal and spinal nerves. Expiratory activities were greatly reduced in gasping, with some activities being completely eliminated. Reductions of expiratory activity were more prominent for spinal than laryngeal nerves. Similar results were obtained in cats having intact vagi that were ventilated with a servo-respirator so that lung inflation paralleled phrenic activity. The concept that gasping differs fundamentally form other ventilatory patterns is discussed.  相似文献   

4.
We hypothesized that the in situ perfused preparation of the juvenile rat exhibits patterns of ventilatory activity comparable to eupnea and gasping in vivo. To evaluate this hypothesis, we examined high-frequency oscillations of activity of the phrenic nerve at 27-34 degrees C. The peak frequency of these high-frequency oscillations was defined from power spectral analysis. In situ, recordings were obtained in hyperoxic normocapnia, during ventilatory cycles in which the peak of integrated phrenic activity was achieved late in the burst, as in eupnea in vivo. Recordings were also obtained in hypoxic hypercapnia, when the peak of integrated phrenic activity occurred in the first half of the burst, as in gasping in vivo. In situ, peak frequencies in the power spectra were significantly higher in gasping than during eupnea. Frequencies during eupnea and gasping were progressively elevated as the temperature of the in situ preparation was increased. The shift in peak frequencies between eupnea and gasping and the temperature sensitivity of frequencies in situ were the same as in vivo. Results provide additional support for the conclusion that the in situ preparation demonstrates distinctly different patterns of automatic ventilatory activity, comparable to eupnea and gasping in vivo.  相似文献   

5.
Phrenic and external intercostal motoneuron activities were compared during progressive asphyxia induced by the interruption of artificial ventilation in the pentobarbital-urethan-anesthetized, gallamine-paralysed rabbit. The relative augmentation of inspiratory activity of the T1-T4 external intercostal nerves was significantly greater than that of the phrenic nerve during asphyxic hyperpnea. This was associated with a greater recruitment of intercostal than of phrenic motoneurons, particularly late in the hyperpneic phase immediately before the period of asphyxic apnea. However, peak and average discharge frequencies developed by intercostal motoneurons (n = 20) were only approximately 60% of those of the phrenic motoneurons (n = 28). Gasping respiration terminated the apneic period and was associated with a further intense recruitment of intercostal though not of phrenic motoneurons, but discharge frequencies developed by the intercostal motoneurons remained approximately 60% of those of the phrenic motoneurons. The instantaneous frequency profiles generated by the motoneurons often exhibited progressive changes during the terminal stages of hyperpnea (reduction in inspiratory duration and duty cycle and increases in inspiratory slope and discharge frequencies) such that much of the character of gasping respiration became evident before the apnea. Such smooth transitional sequences do not obviate the existence of an "independent gasping center" but do require that such a proposed center at least possess the capacity for interaction with those sites responsible for the generation of eupneic and hyperpneic respiration.  相似文献   

6.
The perfused in situ juvenile rat preparation produces phrenic discharge patterns comparable to eupnea and gasping in vivo. These ventilatory patterns of eupnea and gasping differ in multiple aspects, including most prominently the rate of rise of inspiratory activity. Because gasping, but not eupnea, appeared similar after vagotomy in spontaneous breathing preparations, it has been assumed that gasping was unresponsive to afferent stimuli from pulmonary stretch receptors. In the present study, efferent activity of the phrenic nerve was recorded during eupnea and gasping in the in situ juvenile rat preparation. Gasping was induced in hypoxic-hypercapnia or ischemia. An increase in the pressure of tonic lung inflation from 1 to 10 cmH2O caused a prolongation of the duration between phrenic bursts in both eupnea or gasping. Bilateral vagotomy eliminated these changes. We conclude that the neural substrate mediating the Hering-Breuer reflex is retained in the in situ preparation and that the brain stem circuitry generating the respiratory patterns responds to tonic activation of pulmonary stretch receptors in a similar manner in eupnea and gasping. These findings support the homology of eupnea-like phrenic discharge patterns in the reduced in situ preparation and eupnea in vivo and disprove the common supposition that gasping is insensitive to vagal afferent feedback from pulmonary stretch receptor mechanisms.  相似文献   

7.
The perfused in situ juvenile rat preparation produces patterns of phrenic discharge comparable to eupnea and gasping in vivo. These ventilatory patterns differ in multiple aspects, including most prominently the rate of rise of inspiratory activity. Although we have recently demonstrated that both eupnea and gasping are similarly modulated by a Hering-Breuer expiratory-promoting reflex to tonic pulmonary stretch, it has generally been assumed that gasping was unresponsive to afferent stimuli from pulmonary stretch receptors. In the present study, we recorded eupneic and gasplike efferent activity of the phrenic nerve in the in situ juvenile rat perfused brain stem preparation, with and without phrenic-triggered phasic pulmonary inflation. We tested the hypothesis that phasic pulmonary inflation produces reflex responses in situ akin to those in vivo and that both eupnea and gasping are similarly modulated by phasic pulmonary stretch. In eupnea, we found that phasic pulmonary inflation decreases inspiratory burst duration and the period of expiration, thus increasing burst frequency of the phrenic neurogram. Phasic pulmonary inflation also decreases the duration of expiration and increases the burst frequency during gasping. Bilateral vagotomy eliminated these changes. We conclude that the neural substrate mediating the Hering-Breuer reflex is retained in the in situ preparation and that the brain stem circuitry generating the respiratory patterns respond to phasic activation of pulmonary stretch receptors in both eupnea and gasping. These findings support the homology of eupneic phrenic discharge patterns in the reduced in situ preparation and eupnea in vivo and disprove the common supposition that gasping is insensitive to vagal afferent feedback from pulmonary stretch receptor mechanisms.  相似文献   

8.
We examined the effects of chemical and reflex drives on the postinspiratory inspiratory activity (PIIA) of phrenic motoneurons using a single-fiber technique. Action potentials from "single" fibers were recorded from the C5 phrenic root together with contralateral mass phrenic activity (also from C5) in anesthetized, paralyzed, and artificially ventilated cats with intact vagus and carotid sinus nerves. Nerve fibers were classified as "early" or "late" based on their onset of discharge in relation to mass phrenic activity during hyperoxic ventilation. Only the early fibers displayed PIIA but not the late fibers, even when their activity began earlier in inspiration with increased chemical drives. Isocapnic hypoxia increased, whereas hyperoxic hypercapnia shortened the duration of PIIA. Pulmonary stretch and "irritant" receptors inhibited PIIA. Hypercapnia and stimulation of peripheral chemoreceptors by lobeline excited both early and late units to the same extent, but hypoxic ventilation had a less marked excitatory effect on late fiber activity. Irritant receptor activation increased the activity of early more than late fibers. Hyperoxic hyperventilation eliminated late phrenic fiber activity, whereas early fibers became tonically active. Bilateral vagotomy abolished this sustained discharge in eight of nine early units, suggesting the importance of vagal afferents in producing tonic firing during hyperventilation. These results suggest that early and late phrenic fibers have different responses to chemical stimuli and to vagally mediated reflexes; late units do not discharge in postinspiratory period, whereas early fibers do; the PIIA is not affected in the same way by various chemical and vagal inputs; and early units that exhibit PIIA display tonic activity with hyperoxic hypocapnia.  相似文献   

9.
Fast respiratory rhythms include medium- (MFO) and high-frequency oscillations (HFO), which are much faster than the fundamental breathing rhythm. According to previous studies, HFO is characterized by high coherence (Coh) in phrenic (Ph) nerve activity, thereby providing a means of distinguishing between these two types of oscillations. Changes in Coh between the Ph and hypoglossal (XII) nerves during the transition from normal eupnic breathing to gasping have not been characterized. Experiments were performed on nine unanesthetized, chemo- and barodenervated, decerebrate adult rats, in which sustained asphyxia elicited hyperpnea and gasping. A gated time-frequency Coh analysis was developed and applied to whole Ph and medial XII nerve recordings. The results showed dynamic Ph-Ph Coh during eupnea, including MFO and HFO. XII-XII Coh during eupnea was broadband and included four distinct peaks, with low-frequency Coh dominating the epochs preceding the onset of Ph activity. During gasping, only MFO-peaks were present in Ph-Ph Coh. Bilateral XII activity showed a significant reduction in Coh and a shift toward lower frequencies during gasping. In contrast, contralateral Ph-XII Coh progressively increased during state changes from eupnea to gasping, a tendency mirrored in the startup part of the Ph activity. These data suggest significant hypoxia/hypercapnia-induced alterations in synchronization between respiratory outputs during the transition from eupnea to gasping, reflecting a reconfiguration of the respiratory network and/or alterations in the circuitry associated with the motor pools, including dynamic coupling between outputs.  相似文献   

10.
Respiratory motor outputs contain medium-(MFO) and high-frequency oscillations (HFO) that are much faster than the fundamental breathing rhythm. However, the associated changes in power spectral characteristics of the major respiratory outputs in unanesthetized animals during the transition from normal eupneic breathing to hypoxic gasping have not been well characterized. Experiments were performed on nine unanesthetized, chemo- and barodenervated, decerebrate adult rats, in which asphyxia elicited hyperpnea, followed by apnea and gasping. A gated fast Fourier transform (FFT) analysis and a novel time-frequency representation (TFR) analysis were developed and applied to whole phrenic and to medial branch hypoglossal nerve recordings. Our results revealed one MFO and one HFO peak in the phrenic output during eupnea, where HFO was prominent in the first two-thirds of the burst and MFO was prominent in the latter two-thirds of the burst. The hypoglossal activity contained broadband power distribution with several distinct peaks. During gasping, two high-amplitude MFO peaks were present in phrenic activity, and this state was characterized by a conspicuous loss in HFO power. Hypoglossal activity showed a significant reduction in power and a shift in its distribution toward lower frequencies during gasping. TFR analysis of phrenic activity revealed the increasing importance of an initial low-frequency "start-up" burst that grew in relative intensity as hypoxic conditions persisted. Significant changes in MFO and HFO rhythm generation during the transition from eupnea to gasping presumably reflect a reconfiguration of the respiratory network and/or alterations in signal processing by the circuitry associated with the two motor pools.  相似文献   

11.
Phrenic afferents and their role in inspiratory control   总被引:4,自引:0,他引:4  
In anesthetized cats, with vagi cut and the spinal cord severed at the C8 level, phrenic motor and/or sensory discharge was recorded. Small afferent phrenic fibers were identified through their activation by lactic acid, hyperosmotic NaCl solution, or phenyl diguanide. They exhibited a spontaneous but irregular low-frequency discharge. Block of their conduction by procaine had no effect on eupneic motor phrenic activity. Large afferent phrenic fibers showed a spontaneous rhythmic discharge, and cold block (6 degrees C) of these fibers significantly prolonged the phrenic discharge time (Tphr) and total breath duration (TT) during eupnea. The stimulation of all afferent phrenic fibers lowered the impulse frequency of phrenic motoneurons (f impulses) and shortened both Tphr and TT. When the stimulation was performed during cold block all of the effects on phrenic output persisted, but changes in timing were less pronounced. Under procaine block, only the effects of phrenic nerve stimulation on Tphr persisted. These results suggest that both large and small afferent phrenic fibers control the inspiratory activity with a prominent role of small fibers on phrenic motoneuron impulse frequency.  相似文献   

12.
In cats anesthetized with chloralose-urethan, vagotomized, paralyzed, and artifically ventilated, superficial radial (cutaneous) and hamstring (muscle) nerve afferents were stimulated while phrenic nerve electrical activity was recorded. The results obtained with both types of nerves were similar. Stimulation in mid and late expiration advanced the onset of the next inspiration, shortening its duration. Stimulation in early inspiration advanced, while that in late inspiration delayed, the onset of the next expiration. These effects were often accompanied by changes in phrenic motoneuron firing patterns (earlier recruitment, increased discharge frequency, increased slope of integrated phrenic neurogram). Repetitive somatic afferent stimulation produced sustained increases in respiratory frequency in all cats and in half of them entrainment of respiratory frequency to the frequency of stimulation occurred at ratios such as 4:3, 4:5, 1:2, 1:3, 1:4, and 1:7. The lowest stimulus intensity required for evoking these phase shifts was between 5 and 10T (threshold of most excitable fibers) for muscle afferents and between 1 and 2T for cutaneous afferents. These results demonstrate the existence of a reflex mechanism capable of locking respiratory frequency to that of a periodic somatic afferent input. They also provide an experimental basis for the hypothesis that reflexes are resposible for the observed locking between step or pedal frequency and respiratory rate during exercise in man.  相似文献   

13.
This study evaluated possible neuronal mechanisms responsible for the transition from normal breathing (eupnea) to gasping. We hypothesized that a blockade of both inhibitory glycinergic synaptic transmission and potassium channels, combined with an increase in extracellular concentration of potassium, would induce a switch from an eupneic respiratory pattern to gasping. Efferent activities of the phrenic, vagal, and hypoglossal nerves were recorded during eupnea and ischemia-induced gasping in a perfused in situ preparation of the juvenile rat (4-6 wk of age). To block potassium channels, 4-aminopyridine (4-AP, 1-10 microM) was administered. Strychnine (0.2-0.6 microM) was used to block glycinergic neurotransmission. After administrations of 4-AP, excess extracellular potassium (10.25-17.25 mM), and strychnine, the incrementing pattern of eupneic phrenic activity was altered to a decrementing discharge. Hypoglossal and vagal activities became concentrated to the period of the phrenic burst with expiratory activity being reduced or eliminated. These changes in neural activities were similar to those in ischemia-induced gasping. Results are consistent with the concept that the elicitation of gasping represents a switch from a network-based rhythmogenesis for eupnea to a pacemaker-driven mechanism.  相似文献   

14.
Inspiratory phase activity was recorded from 33 phrenic motoneuron (PM) axonal fibers in anesthetized, vagotomized, artificially ventilated adult rats. During control conditions (no inspired CO2 added), the population of PM fibers could be separated into early and late onset types based on the time of firing onset relative to the onset of whole phrenic nerve activity. Mean discharge frequencies of both types were not significantly different. Compared with late PM's, early PM's had more spikes per inspiration, fired for a longer period, and the last spike occurred later and during the postinspiratory period. Further, the mean minimal interspike interval was shorter for early PM's than for late PM's. Increasing inspired CO2 to 0.03 and 0.05 resulted in earlier firing onsets and a greater number of spikes per inspiration, particularly for late PM's. Increases in mean firing frequency occurred for both PM types. Mean minimal interspike intervals for both types of PM's showed progressive reductions as CO2 rose. For almost all of the firing properties examined in this study, responses of rat PM axons were similar to those previously reported for the cat.  相似文献   

15.
In decerebrate, vagotomized, paralyzed, and ventilated cats, activities of the phrenic nerve and single hypoglossal nerve fibers were monitored. The great majority of hypoglossal neuronal activities were inspiratory (I), discharging during a period approximating that of phrenic. Many were not active at normocapnia but were recruited in hypercapnia or hypoxia. Once recruited, discharge frequencies, which rose quickly to near maximal levels in early to midinspiration, significantly increased with further augmentations of drive. Also, the onset of activities became progressively earlier, compared with phrenic discharge, in hypercapnia or hypoxia. Smaller numbers of hypoglossal fiber activities, having inspiratory-expiratory (I-E), expiratory (E), expiratory-inspiratory (E-I), or tonic discharge patterns, were also recorded. Activities of E, I-E, and those I fibers that became I-E in high drive may underlie the early burst of expiratory activity of the hypoglossal nerve. It is concluded that the firing and recruitment patterns of hypoglossal neurons differ from those of phrenic motoneurons. However, responses to chemoreceptor stimuli are similar among the two neuronal groups.  相似文献   

16.
Phasic bursting in the hypoglossal nerve can be uncoupled from phrenic bursting by application of positive end-expired pressure (PEEP). We wished to determine whether similar uncoupling can also be induced in other respiratory-modulated upper airway (UAW) motor outputs. Discharge of the facial, hypoglossal, superior laryngeal, recurrent laryngeal, and phrenic nerves was recorded in anesthetized, ventilated rats during stepwise changes in PEEP with a normocapnic, hyperoxic background. Application of 3- to 6-cmH(2)O PEEP caused the onset inspiratory (I) UAW nerve bursting to precede the phrenic burst but did not uncouple bursting. In contrast, application of 9- to 12-cmH(2)O PEEP uncoupled UAW neurograms such that rhythmic bursting occurred during periods of phrenic quiescence. Single-fiber recording experiments were conducted to determine whether a specific population of UAW motoneurons is recruited during uncoupled bursting. The data indicate that expiratory-inspiratory (EI) motoneurons remained active, while I motoneurons did not fire during uncoupled UAW bursting. Finally, we examined the relationship between motoneuron discharge rate and PEEP during coupled UAW and phrenic bursting. EI discharge rate was linearly related to PEEP during preinspiration, but showed no relationship to PEEP during inspiration. Our results demonstrate that multiple UAW motor outputs can be uncoupled from phrenic bursting, and this response is associated with bursting of EI nerve fibers. The relationship between PEEP and EI motoneuron discharge rate differs during preinspiratory and I periods; this may indicate that bursting during these phases of the respiratory cycle is controlled by distinct neuronal outputs.  相似文献   

17.
Spectral analyses were performed on phrenic neurogram recordings from 18 cats to identify high-frequency oscillations (HFOs) inherent in the signals at different phases of inspiratory activity. Gating the analysis for the entire inspiratory phase resulted in dual spectral HFOs (27 and 83 Hz), both of which persisted when the analysis was repeated on the later phase of phrenic inspiratory activity alone (29 and 82 Hz). A third pass at the same data, gating for just the early phase of phrenic discharge, however, resulted in single spectral HFOs at the higher frequency only (86 Hz). Because both early and late recruited phrenic motoneurons carry both higher and lower spectral frequencies, these results demonstrate that the lower frequency HFO is distinctly delayed in onset compared with the higher frequency HFO, the latter of which is believed to have a brain stem origin. This delayed onset may be important in identifying the source of the lower frequency HFO, which appears to be specific to various respiratory efferent systems.  相似文献   

18.
In decerebrate, paralyzed, and ventilated cats, we recorded the activity of 100 spontaneously active phrenic motor axons during the increased phrenic discharges characteristic of fictive vomiting (FV) and coughing (FC). During control respiratory cycles, approximately one-half the neurons were recruited in the first decile of inspiration; recruitment continued throughout inspiration. During FV, the duration of phrenic discharge was halved; 20 of 26 motoneurons studied were recruited in the first decile of the burst. During FC, recruitment times did not change compared with control, although the duration of the phrenic burst doubled. Discharge frequencies increased and recruitment order of phrenic motoneurons was virtually unaffected during FC and FV. Limited recruitment of previously inactive neurons in the filaments from which we recorded was found during FV and FC. During FV, 1 previously inactive motoneuron was recruited in 16 filaments containing 25 spontaneously active motor axons. During FC, 3 new motoneurons were recruited in addition to the 64 already active in 35 filaments. Recruitment during FV and FC was absent even when recording from filaments known, on the basis of antidromic activation, to contain inactive motor axons. During FV, 10 of 26 motoneurons began their discharges with doublets (interspike interval < 10 ms); doublets occurred in only 4 of 67 motoneurons during FC. Already active phrenic motoneurons contributed to the intense phrenic activity associated with both respiratory (coughing) and nonrespiratory (vomiting) behavior by increases in discharge frequency, earlier recruitment, and doublets; the contribution of previously quiescent motoneurons remains uncertain.  相似文献   

19.
In severe hypoxia or ischemia, normal eupneic breathing fails and is replaced by gasping. Gasping serves as part of a process of autoresuscitation by which eupnea is reestablished. Medullary neurons, having a burster, pacemaker discharge, underlie gasping. Conductance through persistent sodium channels is essential for the burster discharge. This conductance is modulated by norepinephrine, acting on alpha 1-adrenergic receptors, and serotonin, acting on 5-HT2 receptors. We hypothesized that blockers of 5-HT2 receptors and alpha 1-adrenergic receptors would alter autoresuscitation. The in situ perfused preparation of the juvenile rat was used. Integrated phrenic discharge was switched from an incrementing pattern, akin to eupnea, to the decrementing pattern comparable to gasping in hypoxic hypercapnia. With a restoration of hyperoxic normocapnia, rhythmic, incrementing phrenic discharge returned within 10 s in most preparations. Following addition of blockers of alpha 1-adrenergic receptors (WB-4101, 0.0625-0.500 microM) and/or blockers of 5-HT2 (ketanserin, 1.25-10 microM) or multiple 5-HT receptors (methysergide, 3.0-10 microM) to the perfusate, incrementing phrenic discharge continued. Fictive gasping was still induced, although it ceased after significantly fewer decrementing bursts than in preparations than received no blockers. Moreover, the time for recovery of rhythmic activity was significantly prolonged. This prolongation was in excess of 100 s in all preparations that received both WB-4101 (above 0.125 microM) and methysergide (above 2.5 microM). We conclude that activation of adrenergic and 5-HT2 receptors is important to sustain gasping and to restore rhythmic respiratory activity after hypoxia-induced depression.  相似文献   

20.
We studied the effects of altered ventilatory drives on the activity of the whole phrenic nerve and single phrenic motoneurons in dogs anesthetized with alpha-chloralose and paralyzed with gallamine triethiodide. Single phrenic motoneurons were classified as either late-onset or early-onset motoneurons (LOM and EOM, respectively), depending on the time of onset of their activity during inspiration. Increase in ventilatory drive was induced by altering chemical drive with changes in arterial blood gases and also by altering the vagal afferent contribution to ventilatory drive. The latter was accomplished by inducing pulmonary gas embolism (PGE) during hyperoxia. Whole phrenic nerve activity was increased by both types of increase in ventilatory drive. In both cases, changes in the firing pattern of LOMs and EOMs were responsible for the increased phrenic output. The changes in post-PGE firing pattern of the LOMs generally consisted of a shift in the time of onset to an earlier point in inspiration and an increase in the number of spikes per inspiratory cycle. Vagotomy abolished the difference between the contributions of LOMs and EOMs to the phrenic response to PGE. Data from dogs studied while they were breathing spontaneously were qualitatively the same as those from the paralyzed animals, indicating no major role for phasic volume feedback in these responses. Our data regarding altered chemical drive are similar to those reported earlier in other species, whereas those regarding PGE demonstrate that vagally mediated increases in ventilatory drive affect both LOMs and EOMs, although LOMs are affected to a greater degree.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号