首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blood-brain barrier in a reptile, Anolis carolinensis   总被引:1,自引:0,他引:1  
An electron microscopic study was made of the ultrastructure and permeability of the capillaries in the cerebral hemispheres of the lizard, Anolis carolinensis. The brain of Anolis is vascularized by a loop-type pattern consisting exclusively of arteriovenous capillary loops. The ultrastructure of the endothelium and the arrangement of the various layers from the capillary lumen to the central nervous tissue is similar to that of mammals. The endothelial cells form a continuous layer around the lumen and are joined by tight interendothelial junctions. The basal lamina of the endothelium is also continuous and encloses pericyte processes. The cells of the nervous tissue rest directly on the basal lamina of the capillary and are separated from each other by a 200 Å space. Intravenously injected horseradish peroxidase (MW 40,000) and ferritin (MW 500,000) were used to study the permeability of the capillaries. The entry of horseradish peroxidase and ferritin into the intercellular spaces of the brain is restricted by the tightness of the interendothelial junctions. No vesicular transport of either tracer occurs; however, ferritin does enter the endothelial cells in vacuoles. No tracer molecules are present in the basal lamina, pericytes, or nervous tissue. The different responses of the endothelial cell to the tracers used in this study suggest that endocytotic activities of endothelial cells involve different processes. Vacuoles formed by marginal folds, vacuoles formed by endothelial surface projections or deep invaginations of the plasma membrane, 600–800 Å vesicles, and coated vesicles all seem to differ in the nature of the substances which they endocytose.  相似文献   

2.
The fine structure of plasmalemmal tubular invaginations with caveolae and coated pits in the sinus endothelial cells of the rat spleen has been demonstrated by scanning and transmission electron microscopy. In addition, the three-dimensional structure of the tubular invagination has been revealed by computer-aided reconstruction. The tubular invaginations of the plasma membrane plunged into the cytoplasm everywhere from the apical, lateral, and basal surfaces of the plasma membrane. The invaginations were tubular and branched away, and their plasma membranes were reinvaginated to form numerous caveolae and occasional coated pits. Numerous caveolae were found in clusters that looked similar to a bunch of grapes and the coated pits were present at the base of the clusters. The caveolae and coated pits derived from the tubular invaginations were almost ultrastructurally identical to those derived from the surface plasma membrane. From examination of the fractured surfaces of the endothelial cells treated with the aldehyde prefix osmium-dimethyl sulfoxide-osmium method and of ultrathin sections of those infiltrated by lanthanum nitrate, the tubular invaginations were found to not penetrate any endothelial cells. A computer-aided reconstruction revealed that the caveolae derived from the tubular invaginations were in close apposition to the surface-connected canaliculi. The reaction product of Concanavalin A conjugated to horseradish peroxidase was present on the outer leaflet of the membranes of the coated pits and coated vesicles and also in the contents of the endosomes, but it was absent from any caveolae. Based on our observations, the functional significance of the tubular invaginations in sinus endothelial cells is discussed. Accepted: 13 September 1999  相似文献   

3.
Summary Using horseradish peroxidase (HRP) as a soluble protein tracer, electron microscopic studies were carried out in order to analyze endocytosis in the ruffle-ended ameloblasts of rat incisors. Accumulated HRP was initially incorporated from the ruffled border into the cytoplasm by means of pinocytotic vacuoles (pinosomes) and pinocytotic coated vesicles. The majority of the HRP was taken up by the large number of pinosomes, which then formed large endocytotic vacuoles by fusing either with each other or with preexisting endocytotic vacuoles. As time passed HRP accumulated, not in the pinosomes and ruffled border but in the endocytotic vacuoles and multivesicular bodies. Frequent connections between HRP-labeled coated vesicles and these cytoplasmic bodies indicate that these vesicles serve as an HRP carrier. These findings strongly suggest that ruffle-ended ameloblasts actively absorb soluble proteins from the enamel matrix during enamel maturation.  相似文献   

4.
The uptake of horseradish peroxidase tracer injected into the uterine lumen of the cow was studied during the period of conceptus attachment (Days 18-21; Day 0 = oestrus) and also in cyclic animals. Endocytosis occurred in pregnant and non-pregnant cows but was especially marked when circulating progesterone concentrations were high. By 20 min after injection, the tracer was located in apical endocytotic vesicles and in organelles of the lysosomal system. In addition, some of the horseradish peroxidase-containing vesicles were associated with the lateral membranes of the cells and the tracer was also present in the intercellular spaces and beneath the basal membrane, especially in pregnant animals by the time of conceptus attachment. There was no evidence that pinopod-like functions could be attributed to large cytoplasmic protrusions from endometrial cells. Rather, the protrusions seemed to be involved in secretory processes. The presence of clear vesicles among the endocytotic vesicles suggested a coupled secretory-endocytotic activity of the cells, the significance of which remains to be determined.  相似文献   

5.
T Sasaki 《Histochemistry》1984,80(3):263-268
Using horseradish peroxidase (HRP) as a soluble protein tracer, electron microscopic studies were carried out in order to analyze endocytosis in the ruffle-ended ameloblasts of rat incisors. Accumulated HRP was initially incorporated from the ruffled border into the cytoplasm by means of pinocytic vacuoles ( pinosomes ) and pinocytotic coated vesicles. The majority of the HRP was taken up by the large number of pinosomes , which then formed large endocytotic vacuoles by fusing either with each other or with preexisting endocytotic vacuoles. As time passed HRP accumulated, not in the pinosomes and ruffled border but in the endocytotic vacuoles and multivesicular bodies. Frequent connections between HRP-labeled coated vesicles and these cytoplasmic bodies indicate that these vesicles serve as an HRP carrier. These findings strongly suggest that ruffle-ended ameloblasts actively absorb soluble proteins from the enamel matrix during enamel maturation.  相似文献   

6.
Label-fracture immunochemistry and pre-embedding indirect immunocytochemistry were applied to investigate insulin uptake by endothelial cells. Freeze fracture replicas showed that a small percentage of native insulin receptors are associated with non-coated pits (4%) and coated pits (2%). After warming, receptor bound insulin became increasingly associated with such endocytotic vesicles. After 2 min the percentage of detectable insulin associated with non-coated and coated pits increased to 16% and 8%, respectively. Pre-embedding immunocytochemical localization of insulin gave results consistent with those obtained from the label-fracture studies. Both non-coated and coated vesicles appeared labelled after 5 min of warming. Non-coated vesicles contained 25% of the cell associated insulin while 9% was associated with coated pits and vesicles. After 10 min of warming, 9% of label was located in non-coated vesicles and 7% in coated vesicles. A large proportion (29%) of the label was found in tubular-vesicular endosomes at this time. After 15 min of warming, 30% of the remaining cell-associated gold label was found in multivesicular bodies. These experiments demonstrate that insulin uptake by endothelium is mediated by both coated and non-coated vesicles and that, once internalized, insulin is routed through endosomal pathways that primarily result in transcytosis.  相似文献   

7.
We defined the somatic environment in which female germinal cells develop, and performed ultrastructural analyses of various somatic cell types, with particular reference to muscle cells and follicle cells, that reside within the ovary at different stages of oogenesis. Our findings show that ovarian wall of the crayfish is composed of long muscle cells, blood cells, blood vessels and hemal sinuses. The follicle and germinal cells lie within a common compartment of ovarian follicles that is defined by a continuous basal matrix. The follicle cells form branching cords and migrate to surround the developing oocytes. A thick basal matrix separates the ovarian interstitium from ovarian follicles compartment. Transmission electron microscopy shows that inner layer of basal matrix invaginates deeply into the ovarian compartment. Our results suggest that before being surrounded by follicle cells to form follicles, oogonia and early previtellogenic oocytes reside within a niche surrounded by a basal matrix that separates them from ovarian interstitium. We found coated pits and coated vesicles in the cortical cytoplasm of previtellogenic and vitellogenic oocytes, suggesting the receptor mediated endocytosis for transfer of material from the outside of the oocytes, via follicle cells. The interstitial compartment between the inner muscular layer of the ovarian wall and the basal matrix of the ovarian follicle compartment contains muscle cells, hemal sinuses, blood vessels and blood cells. Granular hemocytes, within and outside the vessels, were the most abundant cell population in the ovarian interstitium of crayfish after spawning and in the immature ovary. J. Morphol. 277:118–127, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Summary The electron-dense tracers ferritin, and iron-dextran, and the protein horseradish peroxidase, have been used to investigate the ultrastructural basis of permeability in the upper and lower segments of the Malpighian tubules of Glomeris marginata. All these materials were able to cross the basal lamina and enter the tubule lumen of the upper segment, and it was established that horseradish peroxidase was able to enter the channels which interrupt the apical junctions.In the upper segment, ferritin, iron-dextran, and horseradish peroxidase are all taken up and accumulated within intracellular vesicles. In the lower segment ferritin and iron-dextran enter the cells but become generally distributed over the cyptoplasm, as well as entering membrane-bounded vacuoles. The behaviour of horseradish peroxidase could not be assessed owing to the presence of endogenous peroxidase activity in the cells.After fixation by direct application of glutaraldehyde to the undissected tubules, the extracellular spaces contained large numbers of membrane-bounded vesicles. The significance of these observations is discussed in relation to the physiological activities of the tubules.The authors are indebted to the Science Research Council for financial supportThe authors wish to thank Mrs. Margarita Petri for her technical assistance and advice  相似文献   

9.
Jarial MS 《Tissue & cell》1992,24(1):139-155
The rectal pads of Schistocerca gregaria are composed of three different cell types: epithelial, secondary and junctional cells. The rectal pads are interconnected by simple rectal cells and both are lined internally by a articular intima. The epithelial cells exhibit extensive infoldings of the apical plasma membranes that are closely associated with mitochondria. Their lateral plasma membranes are highly folded around large mitochondria and enclose intercellular channels and spaces. They are united by belt and spot desmosomes, septate junctions, gap junctions and scalariform junctions, but terminate in a basal syncytium without contacting the basal plasma membranes. The apical and basal cytoplasm contain coated vesicles, dense tubular elements, multivesicular bodies and lysosomes, suggesting receptor-mediated endocytosis of small peptide molecules into the epithelial cells. The apical membrane infoldings of the secondary cells are also associated with large mitochondria. Their basal plasma membranes are covered by connective cell processes and connected with them by spot desmosomes which may be involved in solute recycling. The presence of neurosecretory-like axons near the secondary cells suggests that they exert local control on the function of these cells. The ultrastructural details are examined in relation to their role in solute and water transport.  相似文献   

10.
Summary Selected lobules of term human placenta were extracorporeally perfused and human immunoglobulin-G complexed to horseradish peroxidase (IgG-HRP) was added to the maternal perfusate. After different durations of perfusion IgG-HRP was visualised by use of diamino-benzidine cytochemistry. Within the first 10 min of perfusion IgG-HRP was found bound to microvilli and coated pits of the syncytiotrophoblast; internalisation into coated vesicles and tubulo-vesicular bodies was also observed. Subsequently, IgG-HRP was found in multivesicular bodies and by 30 min appeared in basal vesicles, the frequency of the latter event increasing with time. No routing of IgG-HRP into Golgi regions or lysosomes could be detected. By 60 min IgG-HRP was found in a few caveolae of fetal endothelium of both terminal and intermediate villi. IgG-HRP was not found in intercellular clefts of the endothelium. The pattern of uptake and routing observed suggests a receptor-mediated transcytosis of IgG-HRP across the syncytiotrophoblast and a transcellular pathway through the endothelium.  相似文献   

11.
We examined the uptake and fate of four horseradish peroxidase (HRP) isozymes (Type VI, VII, VIII, and IX) in isolated pancreatic acinar cells. The pattern of uptake was similar for all the isozymes examined, with the exception of Type IX. Very little Type IX HRP was internalized by the cells, and what endocytosis did occur was primarily from the apical cell surface in coated vesicles. In contrast, HRP Type VI, VII, and VIII appeared to be endocytosed largely at the basolateral cell surface. Initially, the tracer was found in smooth vesicles and tubules near the plasma membrane. The tubules resembled the basal lysosomes known to be present in these cells. At the early time points, HRP reaction product was also present in multivesicular bodies (MVBs). By 60 min, the HRP was localized in MVBs, vesicles, and tubules adjacent to the Golgi apparatus. By 12 hr after exposure to the isozymes, the tracer was present in small apical vesicles. At no time could reaction product be localized in the rough endoplasmic reticulum, Golgi saccules, or secretory granules. The results of this study suggest that the charge of a soluble-phase marker has little effect on its uptake or intracellular distribution.  相似文献   

12.
The permeability of the pancreatic epithelium to horseradish peroxidase is investigated in the resting and carbachol stimulated rabbit pancreas. Horse radish peroxidase administered to the bathing medium of the isolated rabbit pancreas appears in the secreted fluid of the pancreas in a relatively low concentration. Carbachol stimulates both protein secretion and the passage of horse radish peroxidase into the secretory fluid. Histochemical assessment shows that horseradish peroxidase enters the interstitial spaces of the pancreatic tissue and is present along basal and lateral plasma membranes of acinar and ductular cells. In the absence of carbachol, horseradish peroxidase is seen more frequently in the tight junctions of ductular cells than in those of acinar cells. However, in the carbachol stimulated gland horseradish peroxidase is observed in the junctions between adjacent acinar cells more frequently than in the unstimulated gland. Freeze-fracture of acinar cells shows that the number of tight junctional strands and the tight junction depth are slightly decreased upon carbachol stimulation. The findings suggest that cholinergic stimulation of the exocrine pancreas increases the permeability of the acinar cell junctions to moderately large molecules such as horseradish peroxidase. This may result in an increase of the concentration of the molecule in the secreted fluid.  相似文献   

13.
Summary The permeability of the pancreatic epithelium to horseradish peroxidase is investigated in the resting and carbachol stimulated rabbit pancreas. Horse radish peroxidase administered to the bathing medium of the isolated rabbit pancreas appears in the secreted fluid of the pancreas in a relatively low concentration. Carbachol stimulates both protein secretion and the passage of horse radish peroxidase into the secretory fluid. Histochemical assessment shows that horseradish peroxidase enters the interstitial spaces of the pancreatic tissue and is present along basal and lateral plasma membranes of acinar and ductular cells. In the absence of carbachol, horseradish peroxidase is seen more frequently in the tight junctions of ductular cells than in those of acinar cells. However, in the carbachol stimulated gland horseradish peroxidase is observed in the junctions between adjacent acinar cells more frequently than in the unstimulated gland. Freeze-fracture of acinar cells shows that the number of tight junctional strands and the tight junction depth are slightly decreased upon carbachol stimulation. The findings suggest that cholinergic stimulation of the exocrine pancreas increases the permeability of the acinar cell junctions to moderately large molecules such as horseradish peroxidase. This may result in an increase of the concentration of the molecule in the secreted fluid.  相似文献   

14.
A structure for a generalized insect epidermal cell during the formation of the epicuticle is proposed, based on studies of several different epidermal cell types. The protein epicuticle is defined as the dense homogeneous layer below the cuticulin. The formation of the protein epicuticle involves secretory vesicles arising in Golgi complexes, and marks an interlude in the involvement in cuticle formation of plasma membrane plaques. The plaques are concerned in cuticulin formation before and in fibrous cuticle formation after the deposition of the protein epicuticle. The epidermis is characterized by the possession of a cytoskeleton of microtubules and a matrix of microfibers. In the elongated cells forming bristles and spines, the microfibers are often oriented in bundles with an axial banding which repeats every 120 Å. The microtubules are also arranged in columns with a trigonal packing and center to center spacing of about 800 Å. These cytoskeletal structures separate the other organelles into channels which may restrict the pathways open for the movement of secretory and pinocytotic vesicles. The protein epicuticle arises from the secretory vesicles which discharge at the apical surface. The contents disperse and reaggregate below the cuticulin. The Golgi complexes in the basal and central regions have many secretory vesicles and a small saccular component, differing from those nearer the apex which are smaller and have fenestrated saccules. The small coated vesicles (800 Å in diameter) associated with both sorts of complex, probably move to the apical and basal faces of the cell where they may give rise to the large coated vesicles (2000 Å in diameter) inserted in the plasma membrane. Pinocytosis occurs from both apical and basal faces but most lytic activity is in the apical region. Plant peroxidase injected into the haemocoel is taken up basally and transported to the apical MVBs. The large coated vesicles on the apical face may be concerned in the control of the extracellular subcuticular environment. They appear to fill up and detach, fusing to become the apical MVBs.  相似文献   

15.
Summary Human gall-bladder epithelium obtained straight from the operating theatre was incubated in an Ussing chamber with the fluid phase marker, horseradish peroxidase (HRP), for up to 60 min. When the marker was presented on the apical surface, within 30 min it had moved readily across the apical cytoplasm in transport vesicles to receptosomes and into the lateral intercellular space, extending across the basement membrane into the lamina propria. When HRP was presented at the basal aspect, within 30 min it had moved through the lamina propria, across the basement membrane and into the lateral intercellular space. By 60 min, only small amounts had been taken up by the epithelial cells and transported to receptosomes. These data indicate a rapid transmucosal endocytotic pathway for blood-or bile-borne macromolecules.  相似文献   

16.
Protein uptake and degradation by trophotaenial cells of the viviparous goodeid fish Ameca splendens were studied colorimetrically and ultrastructurally using horseradish peroxidase (HRP) as a tracer and acid (ACPase) and alkaline (ALPase) phosphatase cytochemistry. Trophotaeniae are ribbon-like external projections of the embryonic gut that are equivalent to greatly hypertrophied intestinal villi. During gestation within the ovarian lumen, trophotaeniae are directly apposed to the internal ovarian epithelium (IOE) where they establish a placental association between the developing embryo and maternal organism. Trophotaenial absorptive cells possess an ALPase reactive brush border, an endocytotic apparatus, and ACPase reactive standing lysosomes. Ultrastructural studies of protein uptake indicate that cells of the trophotaenial epithelium take up HRP by micropinocytosis and degrade it within lysosomes. Initially (from 1.5-10 min), HRP is taken up in vitro at 22 degrees C at the apical cell surface and passes via endocytotic vesicles into an apical canalicular system. From 1.5 to 10 min exposure, HRP passes passes from the apical canalicular system to a series of small collecting vesicles. After 10 min, HRP is detected within large ACPase reactive supranuclear lysosomes. Three hours after an initial 1 h exposure to HRP, most peroxidase activity within supranuclear lysosomes is no longer detected. Presence of Golgi complexes, residual bodies, and secretory granules in the infranuclear cytoplasm suggest that products of protein uptake and hydrolysis are discharged across basal and lateral cell surfaces and into the trophotaenial circulation. Trophotaeniae of embryos incubated in vitro in HRP-saline take up HRP at an initial rate of 13.5 ng HRP/mg trophotaenial protein/min. The system becomes saturated after 3 h. Trophotaeniae incubated at 4 degrees C show little or no uptake. In trophotaeniae continuously pulsed with HRP for 1 h, then incubated in HRP-free saline, levels of absorbed peroxidase declined at a rate of 0.5 ng/mg trophotaenial protein/min. HRP does not appear to enter the embryo via extra-trophotaenial routes. These findings are consistent with the putative role of trophotaeniae as the embryonic component of the functional placenta of goodeid fishes. Trophotaenial uptake of maternal nutrients accounts for a massive (15,000%) increase in embryonic dry weight during gestation.  相似文献   

17.
The role of the interstitial cells of Cajal (ICC) associated with the myenteric plexus (ICC-MP) as regulators of the motility of the colonic external muscle remains unclear. Ultrastructural studies of myenteric interstitial cells are lacking in human colon. We therefore characterized the distinctive ultrastructure of these cells in the myenteric region of the colon by transmission electron microscopy of the region between the main muscle layers in all parts of the colon in unaffected areas of resected specimens from nine adult human patients. ICC-MP were similar in various colonic regions and had myoid features such as scattered caveolae, prominent intermediate filaments, and cytoplasmic dense bodies. We found characteristic dense membrane-associated bands with a patchy basal lamina, invaginating cellular protrusions (peg and socket junctions) between ICC and between ICC and muscle cells, and close contacts (<100 nm) between ICC and nerves. No gap junctions were observed. Fibroblast-like cells (FLC) were abundant showing well-developed secretory organelles, including coated vesicles, but lacked prominent intermediate filaments and caveolae. FLC had a patchy basal lamina, and peg and socket junctions were observed between them. Macrophage-like cells frequently occurred in close apposition with FLC and, more seldomly, with ICC-MP. The ultrastructure of ICC and FLC in the myenteric region of the human colon thus differs characteristically, but significant overlaps in the ultrastructure between ICC and FLC might complicate any interpretation in pathological ultrastructural studies of the human colonic muscle layer. An erratum to this article can be found at  相似文献   

18.
Summary To investigate the mechanisms whereby bone cells absorb organic bone-matrix components during endochondral bone development, rat humeri were examined, employing horseradish peroxidase as a soluble protein tracer.Intravenously-injected peroxidase filled the osteoid layer and penetrated into the osteocyte lacunae and canaliculi, but did not enter the mineralized bone matrix. Whereas osteocytes rarely took up exogenous peroxidase, osteoblasts and osteoclasts actively endocytosed peroxidase in pinocytotic coated vesicles, tubular structures, and vacuoles. They also formed endocytotic vacuoles containing peroxidase in the Golgi area. The Golgi apparatus and dense bodies of these bone cells were, however, free of reaction products. Osteoclast ruffled borders were responsible for peroxidase absorption. In the osteoblast, osteocyte and osteoclast, endogenous peroxidatic reaction was detected only in mitochondria and not in other membrane-bounded vesicles and bodies. These results strongly suggest that both osteoblasts and osteoclasts participate in the resorption of bone-matrix organic components during bone remodelling.  相似文献   

19.
Two types of interstitial cells have been demonstrated in close association in the deep muscular plexus of rat small intestine, by electron microscopy. Cells of the first type are characterized by a fibroblastic ultrastructure, i.e. a well-developed granular endoplasmic reticulum, Golgi apparatus and absence of the basal lamina. They form a few small gap junctions with the circular muscle cells and show close contact with axon terminals containing many synaptic vesicles. They may play a role in conducting electrical signals in the muscle tissue. Cells of the second type are characterized by many large gap junctions that interconnect with each other and with the circular muscle cells. Their cytoplasm is rich in cell organells, including mitochondria, granular endoplasmic reticulum and Golgi apparatus. They show some resemblance to the smooth muscle cells and have an incomplete basal lamina, caveolae and subsurface cisterns. However, they do not contain an organized contractile apparatus, although many intermediate filaments are present in their processes. They also show close contacts with axon terminals containing synaptic vesicles. These gap-junction-rich cells may be regular components of the intestinal tract and may be involved in the pacemaking activity of intestinal movement.  相似文献   

20.
Summary Experiments were performed to clarify the debate over the entry of circulating proteins into the epididymal lumen by use of the marker horseradish peroxidase (HRP). Epididymal tubules from the caput epididymidis of the rat were immersed in medium TC 199 containing HRP (3.5 mg/ ml) for 5 min to 3 h at 33° C. Sections were examined for the presence of tracer within the epithelial cells by electron microscopy. From 5 min to 3 h, vesicles containing peroxidase reaction products were found throughout the cytoplasm of the principal cells. Vesicles occurred close to both the basal and apical membranes, and many were found opening into the interstitial space and lumen, depending on the length of incubation. By 5 min labelled vesicles were infrequently found in the apical part of the cells. Reaction product was observed in the epididymal lumen adhering to the microvilli from 30 min of incubation onwards. At all periods of incubation peroxidase was present at the base of the epithelium and between the cells, but it was never found within the tight junctional complexes, and no reaction deposits were found within epithelial cells of tubules incubated in the absence of peroxidase. It is concluded that large molecules leaving the capillaries may enter the epididymal lumen in the caput by means of fluid-phase endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号