首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coral planulae are induced to settle and metamorphose by contact with either crustose coralline algae or marine bacterial biofilms. Larvae of two coral species, Pocillopora damicornis and Montipora capitata, which respond to different metamorphic cues, were utilized to investigate the sensory mechanisms used to detect metamorphic cues. Because the aboral pole of the coral planula is the point of attachment to the substratum, we predicted that it is also the point of detection for cues. To determine where sensory cells for cues are localized along the body, individual larvae were transversely cut into oral and aboral portions at various levels along the oral–aboral axis, and exposed to settlement‐inducing substrata. Aboral ends of M. capitata metamorphosed, while oral ends continued to swim. However, in larvae of P. damicornis, ¾ oral ends (i.e., lacking the aboral pole) were also able to metamorphose, indicating that the cells that detect cues may be distributed along the sides of the body. These cells do not correspond to FMRFamide‐immunoreactive cells that are present throughout the body. Cesium ions induced both aboral and oral ends of larvae of both species to settle, suggesting that oral ends have not lost their capacity to metamorphose, despite lacking sensory cells to detect natural cues. To determine whether sensory cells in larvae of P. damicornis are restricted to one side of the body, swimming behavior over substrata was observed in larvae labeled with diI, a red fluorescent lipophilic membrane stain. The larvae were found to rotate around the oral–aboral axis, with their surface against the substratum, not favoring a particular side for detecting cues. While clarifying the regions of the larval body important for settlement and metamorphosis in coral planulae, we conclude that significant differences between coral species may be due to differences in the distribution of sensory structures in relation to different planular sizes.  相似文献   

2.
ABSTRACT. Ultrastructural studies of the trophont of the epizooic loricate peritrich, Circolagenophrys ampulla, show that the body conforms to the basic peritrich pattern. The lorica is dome-shaped, and the trophont is joined to it by attachment organelles. A single row of barren aboral kinetosomes is present. In telotroch formation, as cytokinesis proceeds, a band of aboral kinetosomes develops, running posteroventrally in an arc from the base of the epistomial disc. In one instance, postciliary microtubules were seen associated with the kinetosomes of the adoral polykinety in a dividing organism. In the fully developed telotroch there are several distinctive structures. In the midaboral region there is a scopula with numerous barren kinetosomes in the epiplasm underlying the pellicle. Surrounding the rim of the aboral surface is a tripartite fringe which overlies the base of the aboral ciliary girdle. The outer layer of this fringe contains regularly spaced electron-dense striations and the middle region contains microfilaments. The aboral ciliary girdle forms a complete ring. It is composed of diagonal rows of kinetosomes, 8–9 in each row. Striated fibers run between the rows of kinetosomes. They bend at the ends of the rows and continue for some distance below the outer rim of the aboral surface. Running beside each striated fiber is a band of paracrystalline material. Several distinctive structures are associated with the kinetosomes and striated fibers of the aboral girdle. In the telotroch many of the adoral cilia are absent but the adoral kinetosomes are still present. The possible functions of the specializations of the aboral surface in settlement of the telotroch, and the relationship between telotroch formation and the molting behavior of the crustacean host are discussed.  相似文献   

3.
The numerical method of finite elements (FE) is a powerful tool for analysing stresses and strains in the human body. One area of increasing interest is the skeletal musculature. This study evaluated modelling of skeletal muscle tissue using a combination of passive non-linear, viscoelastic solid elements and active Hill-type truss elements, the super-positioned muscle finite element (SMFE). The performance of the combined materials and elements was evaluated for eccentric motions by simulating a tensile experiment from a published study on a stimulated rabbit muscle including three different strain rates. It was also evaluated for isometric and concentric contractions. The resulting stress-strain curves had the same overall pattern as the experiments, with the main limitation being sensitivity to the active force-length relation. It was concluded that the SMFE could model active and passive muscle tissue at constant rate elongations for strains below failure, as well as isometric and concentric contractions.  相似文献   

4.
Biomechanical researches are essential to develop new techniques to improve the clinical relevance. Skeletal muscle generates the force which results in the motion of human body, so it is essential to study the mechanical and structural properties of skeletal muscle. Many researchers have carried out mechanical study of skeletal muscle with in-vivo testing. This work aims to examine anisotropic mechanical behavior of skeletal muscle with in vitro test (tensile test). It is important to understand the mechanical and structural behavior of skeletal muscle when it is subjected to external loading; the research aims to determine the structural properties of skeletal muscle by tensile testing. Tensile testing is performed on 5 samples of skeletal muscle of a goat at the rate of 1mm/min with fiber orientation along the length and 45° inclined to the length. It is found that muscle is stiffer in the direction parallel to the muscle fiber than at 45° to the muscle fibers. The tensile strength of the skeletal muscle along the fiber direction is 0.44 MPa at maximum load of 110 N and for direction 45° inclined to the muscle fibers, the strength is 0.234 MPa at max load 43 N. The displacement of Muscle sample against the maximum load is small along the length of the muscle fiber i.e. under longitudinal elongation [15.257 mm] as compared to 45° inclined to the length of skeletal muscle [17.775 mm] and under cross fiber elongation [19.7291mm by FEA]. The testing is not performed for 90° fiber orientation due to unavailability of soft tissue in cross fiber direction of the required specification, but finite element analysis is done on the skeletal muscle for the cross fiber orientation. As the fiber orientation within skeletal muscle differs with respect to the length of the muscle, the stiffness of skeletal muscle is also changing effectively. Hence skeletal muscle exhibits the anisotropic mechanical behavior.  相似文献   

5.
6.
Specimens of Holopus rangii (order Cyrtocrinida) were collected by submersible at depths of several hundred meters in the Caribbean and fixed for light and electron microscopy. The presence of an anus is confirmed. However, the chambered organ and glandular axial organ peculiar to crinoids are lacking. The gut lumen sometimes includes partially digested prey items up to several hundred micrometers in diameter, and we propose that Holopus may feed raptorially by rapidly closing its arms over demersal zooplankton. Electron microscopy of the arm reveals a radial nerve and a radial haemal channel, which light microscopy previously failed to demonstrate. The cuticle includes bacteria that are probably symbiotic. The ten brachial nerves of the aboral nervous system unite pairwise to form five calyx nerves. The calyx nerves, one in each radial position, are connected by a pentagonal, interradial commissure and then continue to the attached end of the body where they end blindly without forming an aboral nerve center. The absence of the aboral nerve center and related internal organs strengthens the argument that no basal ossicles are included in the skeleton of the calyx and suggests that Holopus may have evolved from stalked cyrtocrinid ancestors by saltatory loss of major body parts.  相似文献   

7.
The ultrastructure of the tentacles was studied in the sipunculid worm Thysanocardia nigra. Flexible digitate tentacles are arranged into the dorsal and ventral tentacular crowns at the anterior end of the introvert of Th. nigra. The tentacle bears oral, lateral, and aboral rows of cilia; on the oral side, there is a longitudinal groove. Each tentacle contains two oral tentacular canals and an aboral tentacular canal. The oral side of the tentacle is covered by a simple columnar epithelium, which contains large glandular cells that secrete their products onto the apical surface of the epithelium. The lateral and aboral epithelia are composed of cuboidal and flattened cells. The tentacular canals are lined with a flattened coelomic epithelium that consists of podocytes with their processes and multiciliated cells. The tentacular canals are continuous with the radial coelomic canals of the head and constitute the terminal parts of the tentacular coelom, which shows a highly complex morphology. Five tentacular nerves and circular and longitudinal muscle bands lie in the connective tissue of the tentacle wall. Similarities and differences in the tentacle morphology between Th. nigra and other sipunculan species are discussed.Original Russian Text Copyright © 2005 by Biologiya Morya, Maiorova, Adrianov.  相似文献   

8.
We report the first observations of a linear growth pattern in aboral spine ossicles of adult Acanthaster planci (L.). This is unlike the spine development of other echinoderms. Growth in aboral spine ossicles of A. planci is essentially by addition of stereom at the base and the spine's growth history is preserved along its length. There are numerous growth lines perpendicular to the long axis of the ossicle. These are clearly evident in longitudinal spine sections and apparently caused by frequent growth episodes. There are periodic pigment bands which are parallel to the growth lines and evident on the surface of the ossicle. Basal growth of the spine ossicle and the nature of the growth lines were confirmed by tetracycline staining. Size/frequency analyses of a population of A. planci from Davies Reef (GBR) found spine ossicle growth, but not body diameter growth, over the six month period between sampling dates. The additional pigment banding in spine ossicles of 4 individuals recaptured after 6 months suggests that pigment bands are laid down seasonally. If pigment band cyclicity is validated, it offers a simple method for ageing adults of A. planci in field populations.  相似文献   

9.
Understanding the behavior of skeletal muscle is critical to implementing computational methods to study how the body responds to compressive loading. This work presents a novel approach to studying the fully nonlinear response of skeletal muscle in compression. Porcine muscle was compressed in both the longitudinal and transverse directions under five stress relaxation steps. Each step consisted of 5% engineering strain over 1 s followed by a relaxation period until equilibrium was reached at an observed change of 1 g/min. The resulting data were analyzed to identify the peak and equilibrium stresses as well as relaxation time for all samples. Additionally, a fully nonlinear strain energy density–based Prony series constitutive model was implemented and validated with independent constant rate compressive data. A nonlinear least squares optimization approach utilizing the Levenberg–Marquardt algorithm was implemented to fit model behavior to experimental data. The results suggested the time-dependent material response plays a key role in the anisotropy of skeletal muscle as increasing strain showed differences in peak stress and relaxation time (p < 0.05), but changes in equilibrium stress disappeared (p > 0.05). The optimizing procedure produced a single set of hyper-viscoelastic parameters which characterized compressive muscle behavior under stress relaxation conditions. The utilized constitutive model was the first orthotropic, fully nonlinear hyper-viscoelastic model of skeletal muscle in compression while maintaining agreement with constitutive physical boundaries. The model provided an excellent fit to experimental data and agreed well with the independent validation in the transverse direction.  相似文献   

10.
Gudo M 《Acta biotheoretica》2005,53(3):191-216
The early evolutionary history of echinoderms was reconstructed on the basis of structural-functional considerations and application of the quasi-engineering approach of ‘Konstruktions-Morphologie’. According to the presented evolutionary scenario, a bilaterally symmetrical ancestor, such as an enteropneust-like organism, became gradually modified into a pentaradial echinoderm by passing through an intermediate pterobranch-like stage. The arms of a pentaradial echinoderm are identified as hydraulic outgrowths from the central coelomic cavity of the bilateral ancestor which developed due to a shortening of the body in length but widening in the diameter. The resulting pentaradial symmetry is a consequence of mechanical laws that dictate minimal contact surface areas among hydraulic pneumatic entities. These developed in the coelomic cavity (metacoel) in the bilaterally symmetrical ancestor, when from the already U-shaped mesentery with the intestinal tract two additional U-shaped bows developed directly or subsequently. During the subsequent development tensile chords of the mesentery ‘sewed’ the gut with the body wall first in three and secondly in five ‘seams’. During the direct development five ‘seams’ between tensile chords and body wall developed straightly. These internal tensile chords subdivide the body coelom into five hydraulic subsystems (‘pneus’), which eventually arrange in a pentaradial pattern. The body could then enlarge only between the tensile chords, which means that five hydraulic bulges developed. These bulges initially supported the tentacles and finally each of them enclosed the tentacle until only the feather-like appendages of the tentacles projected over the surface. The tentacles with their feathers were transformedinto the ambulacral system, and the bulges become the arms. These morphological transformations were accompanied and partly determined by specific histological modifications, such as the development of mutable connective tissues and skeletal elements that fused to ossicles and provided shape stabilization in form of a calcareous skeleton in the body wall. The organism resulted was an ancestral echinoderm (‘Ur-Echinoderm’) with an enlarged metacoel, stabilized by hydraulic pressure working againsta capsule of mutable connective tissue, skeletal elements and longitudinal muscles. In regard to these reconstructions, the body structure of echinoderms can be understood as a hydraulic skeletal capsule.  相似文献   

11.
We investigated allometric relationships between vertebral centrum cranial surface areas and body weight and skeletal lumbar length in extant platyrrhine and cercopithecid species. Platyrrhines have smaller lumbar vertebral centra regarding the cranial surface area relative to their body weight than extant catarrhines. However, the stress to the spine of quadrupeds is not only influenced by the body weight but also its length, which contributes to the amount of bending moment. Our results indicated that platyrrhines and cercopithecids have similar lumbar vertebral centrum surface areas when they are scaled on the product of the body weight and skeletal lumbar length. Platyrrhines generally tend to have relatively short lumbar columns for a given body weight. As a result of this tendency, their vertebral centra appear relatively small if only body weight is taken into account. The centrum surface area is rather constant relative to the product of the body weight and skeletal lumbar length within platyrrhines or cercopithecids, despite the fact that skeletal lumbar length is in itself rather variable relative to body weight. This result indicates that the vertebral centrum articular area, the lumbar column length and the body weight are strongly correlated with each other and that such relationships are similar between platyrrhines and cercopithecids. These relationships were observed using both the zygapophyseal and rib definitions of the lumbar vertebrae. However, they were more clearly observed when the zygapophyseal definition was adopted. It appeared that lumbar vertebrae of Proconsul nyanzae (KNM−MW 13142) had distinctively smaller surface areas relative to its body weight and lumbar length than for platyrrhines and cercopithecids, differing from extant hominoids, which have comparatively larger lumbar vertebrae. In the case of Morotopithecus, the lumbar vertebral surface area seems to be as large as in extant platyrrhines and cercopithecids if it had a reduced number of lumbar vertebrae. It is uncertain whether its lumbar vertebral surface area was as large as in extant hominoids. Electronic Publication  相似文献   

12.
The development of comb rows in larval and adult Mnemiopsis leidyi and adult Pleurobrachia pileus is compared to regeneration of comb plates in these ctenophores. Late gastrula embryos and recently hatched cydippid larvae of Mnemiopsis have five comb plates in subsagittal rows and six comb plates in subtentacular rows. Subsagittal rows develop a new (sixth) comb plate and both types of rows add plates at similar rates until larvae reach the transition to the lobate form at ~5 mm size. New plate formation then accelerates in subsagittal rows that later extend on the growing oral lobes to become twice the length of subtentacular rows. Interplate ciliated grooves (ICGs) develop in an aboral‐oral direction along comb rows, but ICG formation itself proceeds from oral to aboral between plates. New comb plates in Mnemiopsis larvae are added at both aboral and oral ends of rows. At aboral ends, new plates arise as during regeneration: local widening of a ciliated groove followed by formation of a short split plate that grows longer and wider and joins into a common plate. At oral ends, new plates arise as a single tuft of cilia before an ICG appears. Adult Mnemiopsis continue to make new plates at both ends of rows. The frequency of new aboral plate formation varies in the eight rows of an animal and seems unrelated to body size. In Pleurobrachia that lack ICGs, new comb plates at aboral ends arise between the first and second plates as a single small nonsplit plate, located either on the row midline or off‐axis toward the subtentacular plane. As the new (now second) plate grows larger, its distance from the first and third plates increases. Size of the new second plate varies within the eight rows of the same animal, indicating asynchronous formation of plates as in Mnemiopsis. New oral plates arise as in Mnemiopsis. The different modes of comb plate formation in Mnemiopsis versus Pleurobrachia are accounted for by differences in mesogleal firmness and mechanisms of ciliary coordination. In both cases, the body of a growing ctenophore is supplied with additional comb plates centripetally from opposite ends of the comb rows. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Mitochondria are essential for maintaining skeletal muscle metabolic homeostasis during adaptive response to a myriad of physiologic or pathophysiological stresses. The mechanisms by which mitochondrial function and contractile fiber type are concordantly regulated to ensure muscle function remain poorly understood. Evidence is emerging that the Folliculin interacting protein 1 (Fnip1) is involved in skeletal muscle fiber type specification, function, and disease. In this study, Fnip1 was specifically expressed in skeletal muscle in Fnip1-transgenic (Fnip1Tg) mice. Fnip1Tg mice were crossed with Fnip1-knockout (Fnip1KO) mice to generate Fnip1TgKO mice expressing Fnip1 only in skeletal muscle but not in other tissues. Our results indicate that, in addition to the known role in type I fiber program, FNIP1 exerts control upon muscle mitochondrial oxidative program through AMPK signaling. Indeed, basal levels of FNIP1 are sufficient to inhibit AMPK but not mTORC1 activity in skeletal muscle cells. Gain-of-function and loss-of-function strategies in mice, together with assessment of primary muscle cells, demonstrated that skeletal muscle mitochondrial program is suppressed via the inhibitory actions of FNIP1 on AMPK. Surprisingly, the FNIP1 actions on type I fiber program is independent of AMPK and its downstream PGC-1α. These studies provide a vital framework for understanding the intrinsic role of FNIP1 as a crucial factor in the concerted regulation of mitochondrial function and muscle fiber type that determine muscle fitness.  相似文献   

14.
John F. Pilger 《Zoomorphology》1982,100(2):143-156
Summary An ultrastructural study of the tentacles of Themiste lageniformis (Sipuncula) was conducted as part of a larger study of head metamorphosis in the species.The oral surface of the tentacles is constructed of a multiciliated, pseudostratified, columnar epithelium while the aboral surface is an unciliated, cuboidal epithelium. Intraepidermal mucous cells lie near the junction of the oral and aboral regions. The basal portion of the epidermal cells is embedded in a thick, collagenous extracellular matrix which contains outer circular muscles, inner longitudinal muscles, the main tentacular nerve and its branches. Three tentacular canals are present and are lined by peritoneum. Hemerythrocytes and coelomocytes flow through the lumen of the canals in a regular pattern.Justification for the designation of the tentacular canals as coelomic rather than vascular is discussed.  相似文献   

15.
Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can ‘remember’ early‐life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an ‘epi’‐memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re‐encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early‐life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise‐induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the ‘epi’‐memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging.  相似文献   

16.
Four new species of Vorticella, V. parachiangi sp. n., V. scapiformis sp. n., V. sphaeroidalis sp. n., and V. paralima sp. n., were isolated from coastal brackish waters of southern China. Their morphology, infraciliature, and silverline system were investigated based on observations of specimens both in vivo and following silver staining. Vorticella parachiangi sp. n. is distinguished by: a J‐shaped macronucleus; a single dorsally located contractile vacuole; a two‐rowed infundibular polykinetid 3, in which row 1 is shorter than row 2; 21–31 silverlines between peristome and aboral trochal band, 6–11 between aboral trochal band and scopula. Vorticella scapiformis sp. n. is characterized by its conspicuously thin and irregularly edged peristomial lip; a J‐shaped macronucleus; a single, ventrally located contractile vacuole; row 1 of the infundibular polykinetid 3 proximally shortened; 18–25 silverlines between peristome and aboral trochal band, 8–12 between aboral trochal band and scopula. Vorticella sphaeroidalis sp. n. can be identified by its small, sub‐spherical zooid; a C‐shaped macronucleus; a ventrally located contractile vacuole; an aboral trochal band adjacent to the scopula; 16–18 silverlines between persitome and aboral trochal band, two between aboral trochal band and scopula. Vorticella paralima sp. n. can be identified by its ovoidal zooid; a J‐shaped macronucleus; a dorsally positioned contractile vacuole; rows 1 and 2 of the infundibular polykinetid 3 proximally shortened; 26–35 silverlines from peristome to aboral trochal band, and 7–13 from aboral trochal band to scopula. The SSU rDNA genes of these four species were sequenced and their phylogeny was analyzed.  相似文献   

17.
An ATP-Mg(2+/)P(i) inner mitochondrial membrane solute transporter (SLC25A25), which is induced during adaptation to cold stress in the skeletal muscle of mice with defective UCP1/brown adipose tissue thermogenesis, has been evaluated for its role in metabolic efficiency. SLC25A25 is thought to control ATP homeostasis by functioning as a Ca(2+)-regulated shuttle of ATP-Mg(2+) and P(i) across the inner mitochondrial membrane. Mice with an inactivated Slc25a25 gene have reduced metabolic efficiency as evidenced by enhanced resistance to diet-induced obesity and impaired exercise performance on a treadmill. Mouse embryo fibroblasts from Slc25a25(-/-) mice have reduced Ca(2+) flux across the endoplasmic reticulum, basal mitochondrial respiration, and ATP content. Although Slc25a25(-/-) mice are metabolically inefficient, the source of the inefficiency is not from a primary function in thermogenesis, because Slc25a25(-/-) mice maintain body temperature upon acute exposure to the cold (4 °C). Rather, the role of SLC25A25 in metabolic efficiency is most likely linked to muscle function as evidenced from the physical endurance test of mutant mice on a treadmill. Consequently, in the absence of SLC25A25 the efficiency of ATP production required for skeletal muscle function is diminished with secondary effects on adiposity. However, in the absence of UCP1-based thermogenesis, induction of Slc25a25 in mice with an intact gene may contribute to an alternative thermogenic pathway for the maintenance of body temperature during cold stress.  相似文献   

18.
Extreme variability in the size, shape and spacing of skeletal spines ofPocillopora damicornis has been demonstrated both within single colonies and also between colonies from different environments. Preliminary studies indicated that the majority of spines from branch tips at the apex of the colony display a ‘fasciculate’ growth surface in contrast to partly fasciculate or ‘smooth’ growth surfaces exhibited by spines from branch tips at the base of the colony. No significant differences in the height and width of costal spines from apical and basal branch tips within a single colony were observed, although spines from colonies exposed to strong wave action tended to be significantly shorter and narrower than those from more sheltered environments. Both costal and coenosteal spines from wave-exposed colonies displayed branching and divided extremities while those from sheltered environments consisted of simple cones. Spines develop as an outgrowing of the calicoblastic ectoderm which secretes the skeleton. Growing costal and coenosteal spines are enveloped by a layer of calicoblastic ectoderm which penetrates through mesogloea, aboral gastroderm, coelenteron, oral gastroderm, mesogloea and finally oral ectoderm. Spines within the corallite are surrounded by calicoblastic ectoderm, mesogloea and aboral gastroderm only. A scheme for the growth of the spines is discussed.  相似文献   

19.
Rich Mooi 《Zoomorphology》1986,106(4):212-223
Summary Histological and ultrastructural techniques have been used to describe the functional morphology of clypeasteroid miliary spines, with special reference to their supposed mucus-secreting role. Mucus cells were not found in the miliary spines of any members of the Arachnoididae, Fibulariidae, Laganidae, Echinarachniidae, Dendrasteridae, Astriclypeidae, or Mellitidae examined in this study. Only members of the Clypeasteridae have mucus-secreting cells in these spines. Characteristics of the skeleton, ultrastructure of the nervous system, and histology of the musculature and epithelia of the base, shaft and tip are also discussed. Miliary spines have two bands of cilia running along the entire length of opposite sides of the shaft. The geometric packing of cilium-bearing cells in these bands is described for the first time, as is the remarkable form of the sacs found at the tips of dendrasterid, astriclypeid, and mellitid miliary spines. These sacs are definitely not mucous sacs, as previously described, but are balloons of single-celled epithelium internally tethered to the skeletal tip by copious quantities of collagenous connective tissue. Miliary spines prevent obstruction of aboral nutritive and ventilatory ciliary currents caused by substrate particles falling to the test surface during burrowing. They do this in two ways: (1) they help generate ciliary currents that sweep finer material off the test, and (2) they contribute to the formation of a spine canopy that mechanically blocks larger particles from falling between the spines. Members of the Clypeasteridae secrete an interspine mucous tent that traps potentially clogging material. The miliary spine sacs of sand dollars are deformable space-fillers that plug holes between primary spines in the aboral canopy, even as the spines rock on their tubercles to push sand backwards over the test. Allometry of spines from Echinarachnius parma suggests that aboral military spines and club-shaped spines exhibit co-ordinated growth that maintains the aboral canopy throughout post-metamorphic ontogeny, and that aboral spins have an overall lower growth rate than spines on the oral surface.  相似文献   

20.
This work describes the step-by-step development of a novel, serum-free, in vitro cell culture system resulting in the formation of robust, contracting, multinucleate myotubes from dissociated skeletal muscle cells obtained from the hind limbs of fetal rats. This defined system consisted of a serum-free medium formulation developed by the systematic addition of different growth factors as well as a nonbiological cell growth promoting substrate, N-1[3-(trimethoxysilyl) propyl] diethylenetriamine. Each growth factor in the medium was experimentally evaluated for its effect on myotube formation. The resulting myotubes were evaluated immunocytochemically using embryonic skeletal muscle, specifically the myosin heavy chain antibody. Based upon this analysis, we propose a new skeletal muscle differentiation protocol that reflects the roles of the various growth factors which promote robust myotube formation. Further observation noted that the proposed skeletal muscle differentiation technique also supported muscle–nerve coculture. Immunocytochemical evidence of nerve–muscle coculture has also been documented. Applications for this novel culture system include biocompatibility and skeletal muscle differentiation studies, understanding myopathies, neuromuscular disorders, and skeletal muscle tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号