首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A non-modified and modified with NaOH and ethylenediamine ultrafiltration membranes prepared from AN copolymer have been used as carriers for the immobilization of horseradish peroxidase (HRP) enzyme. The amount of bound protein onto the membranes and the activity of the immobilized enzyme have been investigated as well as the pH and thermal optimum, and the thermal stability of the free and immobilized HRP. The experiments have proved that the modified membrane is a better support for the immobilization of HRP enzyme. The latter has shown a greater thermal stability than the free enzyme.A possible application has been studied for reducing phenol concentration in water solutions through oxidation of phenol by hydrogen peroxide, in the presence of free and immobilized HRP enzyme on modified AN copolymer membranes. A higher degree of the phenol oxidation has been observed in the presence of the immobilized enzyme. A total removal of phenol has been achieved in the presence of immobilized HRP at concentration of the hydrogen peroxide 0.5 mmol L?1 and concentration of the phenol in the model solutions within the interval 5–40 mg L?1. A high degree of phenol oxidation (95.4%) has been achieved in phenol solution with 100 mg L?1 concentration in the presence of hydrogen peroxide and immobilized HRP, which demonstrates the promising opportunity of using the enzyme for bioremediation of waste waters, containing phenol.The immobilized HRP has shown good operational stability. Deactivation of the immobilized enzyme to 50% of the initial activity has been observed after the 20th day of the enzyme operation.  相似文献   

2.
Tyrosinase was immobilized on glutaraldehyde crosslinked chitosan-clay composite beads and used for phenol removal. Immobilization yield, loading efficiency and activity of tyrosinase immobilized beads were found as 67%, 25% and 1400 U/g beads respectively. Optimum pH of the free and immobilized enzyme was found as pH 7.0. Optimum temperature of the free and immobilized enzyme was determined as 25-30 °C and 25 °C respectively. The kinetic parameters of free and immobilized tyrosinase were calculated using l-catechol as a substrate and K(m) value for free and immobilized tyrosinase were found as 0.93 mM and 1.7 mM respectively. After seven times of repeated tests, each over 150 min, the efficiency of phenol removal using same immobilized tyrosinase beads were decreased to 43%.  相似文献   

3.
Phenol oxidase (EC 1.14.18.1) from the microscopic fungus Mycelia sterilia IBR 35219/2 was immobilized using glutaraldehyde on macroporous silica carriers. The enzyme immobilized on amino-Silochrome SKh-2 or aminopropyl-Silochrome 350/80 exhibited maximum activity. Soluble and immobilized phenol oxidases were compared. Compared to the soluble enzyme, the activity of which was optimum at pH 5.5, immobilized phenol oxidase exhibited optimum activity under slightly more acidic conditions (pH 5.2). Immobilization considerably increased the enzyme stability. Both soluble and immobilized forms of phenol oxidase from M. sterilia IBR 35219/2 catalyze oxidative conversion of phenolic compounds of the green tea extract.  相似文献   

4.
Phenol oxidase (EC 1.14.18.1) from the microscopic fungusMycelia sterilia IBR 35219/2 was immobilized using glutaraldehyde on macroporous silica carriers. The enzyme immobilized on amino-Silochrome SKh-2 or aminopropyl-Silochrome 350/80 exhibited maximum activity. Soluble and immobilized phenol oxidases were compared. Compared to the soluble enzyme, the activity of which was optimum at pH 5.5, immobilized phenol oxidase exhibited optimum activity under slightly more acidic conditions (pH 5.2). Immobilization considerably increased enzyme stability. Both soluble and immobilized forms of phenol oxidase fromM. sterilia IBR 35 219/2 catalyze oxidative conversion of phenolic compounds of green tea extract.  相似文献   

5.
Shao J  Ge H  Yang Y 《Biotechnology letters》2007,29(6):901-905
A partially purified potato polyphenol oxidase (PPO) was immobilized in a cross-linked chitosan–SiO2 gel and used to treat phenol solutions. Under optimized conditions (formaldehyde 20 mg/ml, PPO 4 mg/ml and pH 7.0), the activity of immobilized PPO was 1370 U/g and its K m value for catechol was 12 mm at 25°C. The highest activity of immobilized enzyme was at pH 7.4. Immobilization stabilized the enzyme with 73 and 58% retention of activity after 10 and 20 days, respectively, at 30°C whereas most of the free enzyme was inactive after 7 days. The efficiency of removing phenol (10 mg phenol/l) by the immobilized PPO was 86%, and about 60% removal efficiency was retained after five recycles. The immobilized PPO may thus be a useful for removing phenolic compounds from industrial waste-waters.  相似文献   

6.
The main objective of this work was to investigate the removal of aqueous phenol using immobilized enzymes in both bench scale and pilot scale three-phase fluidized bed reactors. The enzyme used in this application was a fungal tyrosinase [E.C. 1.14.18.1] immobilized in a system of chitosan and alginate. The immobilization matrix consisted of a chitosan matrix cross-linked with glutaraldehyde with an aliginate-filled pore space. This support matrix showed superior mechanical properties along with retaining the unique adsorptive characteristics of the chitosan. Adsorption of the o-quinone product by the chitosan reduced tyrosinase inactivation that is normally observed for this enzyme under these conditions. This approach allowed reuse of the enzyme in repeated batch applications. For the bench scale reactor (1.2-l capacity) more than 92% of the phenol could be removed from the feed water using an immobilized enzyme volume of 18.5% and a residence time of the liquid phase of 150 min. Removal rates decreased with subsequent batch runs. For the pilot scale fluidized bed (60 l), 60% phenol removal was observed with an immobilized enzyme volume of 5% and a residence time of the liquid phase of 7 h. Removal decreased to 45% with a repeat batch run with the same immobilized enzyme.  相似文献   

7.
A method of immobilizing enzymes from Pseudomonas sp. that decompose phenol on polymeric ultrafiltration membranes is described. Transport-separation properties of neutral and enzymic membranes have been compared and the optimal ultrafiltration process parameters of a model phenol solution have been determined. The immobilized enzyme system was applied to the biodegradation of phenol in coke wastewaters.  相似文献   

8.
An aerobic microorganism with an ability to utilize phenol as carbon and energy source was isolated from a hydrocarbon contamination site by employing selective enrichment culture technique. The isolate was identified as Arthrobacter citreus based on morphological, physiological and biochemical tests. This mesophilic organism showed optimal growth at 25°C and at pH of 7.0. The phenol utilization studies with Arthrobacter citreus showed that the complete assimilation occurred in 24 hours. The organism metabolized phenol up to 22 mM concentrations whereas higher levels were inhibitory. Thin layer chromatography, UV spectral and enzyme analysis were suggestive of catechol, as a key intermediate of phenol metabolism. The enzyme activities of phenol hydroxylase and catechol 2,3-dioxygenase in cell free extracts of Arthrobacter citreus were indicative of operation of a meta-cleavage pathway for phenol degradation. The organism had additional ability to degrade catechol, cresols and naphthol. The degradation rates of phenol by alginate and agar immobilized cells in batch fermentations showed continuous phenol metabolism for a period of eight days.  相似文献   

9.
Laccase was produced from Streptomyces psammoticus under solid-state fermentation. The enzyme was partially purified by ammonium sulphate precipitation and was immobilized in alginate beads by entrapment method. Calcium alginate beads retained 42.5% laccase activity, while copper alginate beads proved a better support for laccase immobilization by retaining 61% of the activity. Phenol and colour removal from a phenol model solution was carried out using immobilized laccase. Batch experiments were performed using packed bed bioreactor, containing immobilized beads. Reusability of the immobilized matrix was studied for up to 8 successive runs, each run with duration of 6 h. The system removed 72% of the colour and 69.9% of total phenolics from the phenol model solution after the initial run. The immobilized system maintained 50% of its efficiency after eight successive runs. The degradation of phenolic compounds by immobilized laccase was evaluated and confirmed by Thin layer chromatography and nuclear magnetic resonance spectroscopy.  相似文献   

10.
Degradation kinetics of phenol by free and agar-entrapped cells of Candida tropicalis was studied in batch cultures. The initial phenol degradation rate achieved with free cells was higher than that obtained with immobilized cells, when phenol concentrations up to 1000 mg l–1 were used. However, at higher phenol concentrations, the behaviour was quite different. The initial degradation rate of the immobilized yeast cells was about 10 times higher than that of the free cells, at a phenol concentration of 3500 mg l–1. The semicontinuous and continuous degradation of phenol by immobilized yeast cells was also investigated in a multi-stage fluidized bed reactor. The highest phenol removal efficiencies and degradation rates as well as the lowest values of residual phenol and chemical oxygen demand were obtained in the semicontinuous culture when phenol concentrations up to 1560 mg l–1 were used.  相似文献   

11.
Abstract

Some micropollutants present in wastewaters are barely removed in sewage treatment plants. In many cases a post-treatment process based on separation and/or oxidation has to be applied. The aim of this study was the technical and economic comparison of enzymatic technologies with other advanced oxidation processes (AOPs) for the degradation of phenol. Batch and continuous enzymatic reactors, using free and immobilized manganese peroxidase (MnP, EC 1.11.1.13), were considered. Continuous degradation of phenol in an enzymatic membrane reactor was shown to be the fastest process and degradation in a continuous reactor with immobilized enzyme involved the lowest consumption of enzyme. However, the immobilization process increased the enzyme cost 100-fold. A continuous enzymatic membrane reactor gave high degradation efficiency and may be a viable technology for phenol removal when compared with other AOPs from both technical and economic points of view.  相似文献   

12.
Phenol degradation by Bacillus cereus AKG1 MTCC9817 and AKG2 MTCC 9818 was investigated and degradation kinetics are reported for the free and Ca-alginate gel-immobilized systems. The optimal pH for maximum phenol degradation by immobilized AKG1 and AKG2 was found to be 6.7 and 6.9, respectively, while 3% alginate was optimum for both the strains. The degradation of phenol by free as well as immobilized cells was comparable at lower concentrations of phenol (100–1000 mg l−1). However, the degradation efficiency of the immobilized strains was higher than that of the free strains at higher phenol concentrations (1500–2000 mg l−1), indicating the improved tolerance of the immobilized cells toward phenol toxicity. More than 50% of 2000 mg l−1 phenol was degraded by immobilized AKG1 and AKG2 within 26 and 36 days, respectively. Degradation kinetics of phenol by free and immobilized cells are well represented by the Haldane and Yano model.  相似文献   

13.
A novel amperometric phenol sensor was constructed by immobilizing tyrosinase in a titania sol-gel matrix. The tyrosinase entrapped sol-gel film was obtained with a vapor deposition method, which simplified the traditional sol-gel process and avoided the shrinkage and cracking of conventional sol-gel-derived glasses. This matrix provided a microenvironment for retaining the native structure and activity of the entrapped enzyme and a very low mass transport barrier to the enzyme substrates. Phenol could be oxidized by dissolving oxygen in presence of immobilized tyrosinase to form a detectable product, which was determined at -150 mV without any mediator. The phenol sensor exhibited a fast response (less than 5 s) and sensitivity as high as 103 microA/mM, which resulted from the porous structure and high enzyme loading of the sol-gel matrix. The linear range for phenol determination was from 1.2x10(-7) to 2.6x10(-4) M with a detection limit of 1.0x10(-7) M. The apparent Michaelis-Menten constant of the encapsulated tyrosinase was calculated to be (0.29+/-0.02) mM. The stability of the biosensor was also evaluated.  相似文献   

14.
Removal of phenols from wastewater by soluble and immobilized tyrosinase   总被引:2,自引:0,他引:2  
An enzymatic method for removal of phenols from industrial wastewater was investigated. Phenols in an aqueous solution were removed after treatment with mushroom tyrosinase. The reduction order of substituted phenols is catechol > p-cresol > p-chlorophenol > phenol > p-methoxyphenol. In the treatment of tyrosinase alone, no precipitate was formed but a color change from colorless to dark-brown was observed. The colored products were removed by chitin and chitosan which are available abundantly as shellfish waste. In addition, the reduction rate of phenols was observed to be accelerated in the presence of chitosan. Tyrosinase, immobilized by using amino groups in the enzyme on cation exchange resins, can be used repeatedly. By treatment with immobilized tyrosinase, 100% of phenol was removed after 2 h, and the activity was reduced very little even after 10 repeat treatments. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
A locally isolated Acinetobacter sp. Strain AQ5NOL 1 was encapsulated in gellan gum and its ability to degrade phenol was compared with the free cells. Optimal phenol degradation was achieved at gellan gum concentration of 0.75% (w/v), bead size of 3 mm diameter (estimated surface area of 28.26 mm2) and bead number of 300 per 100 ml medium. At phenol concentration of 100 mg l−1, both free and immobilized bacteria exhibited similar rates of phenol degradation but at higher phenol concentrations, the immobilized bacteria exhibited a higher rate of degradation of phenol. The immobilized cells completely degrade phenol within 108, 216 and 240 h at 1,100, 1,500 and 1,900 mg l−1 phenol, respectively, whereas free cells took 240 h to completely degrade phenol at 1,100 mg l−1. However, the free cells were unable to completely degrade phenol at higher concentrations. Overall, the rates of phenol degradation by both immobilized and free bacteria decreased gradually as the phenol concentration was increased. The immobilized cells showed no loss in phenol degrading activity after being used repeatedly for 45 cycles of 18 h cycle. However, phenol degrading activity of the immobilized bacteria experienced 10 and 38% losses after the 46 and 47th cycles, respectively. The study has shown an increased efficiency of phenol degradation when the cells are encapsulated in gellan gum.  相似文献   

16.
Soybean hull peroxidase (SHP, E.C. 1.11.1.7) was immobilized by a glutaraldehyde and periodate method onto series of macroporous copolymers of glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA), poly(GMA-co-EGDMA) with various surface characteristics and pore size diameters ranging from 44 to 200 nm. Glutaraldehyde immobilization method and poly(GMA-co-EGDMA) named SGE 20/12 with pore sizes of 120 nm gave immobilized enzyme with highest specific activity of 25 U/g. Deactivation studies showed that immobilization increased stability of SHP and that surface characteristics of the used copolymer had a major influence on a stability of immobilized enzyme at high temperatures and in an organic solvent. The highest thermostability was obtained using the copolymer SGE 20/12 with pore size of 120 nm, while the highest stability in dioxane had SHP immobilized onto copolymer SGE 10/4 with pore size of 44 nm. Immobilized SHP showed a wider pH optimum as compared to the native enzyme especially at alkaline pH values and 3.2 times increased K m value for pyrogallol. After 6 cycles of repeated use in batch reactor, immobilized SHP retained 25 % of its original activity. Macroporous copolymers with different surface characteristics can be used for fine tuning of activity and stability of immobilized SHP to obtain a biocatalyst suitable for phenol oxidation or polymer synthesis in organic solvents.  相似文献   

17.
Aims: To immobilize Methylobacterium sp. NP3 and Acinetobacter sp. PK1 to silica and determine the ability of the immobilized bacteria to degrade high concentrations of phenol. Methods and Results: The phenol degradation activity of suspended and immobilized Methylobacterium sp. NP3 and Acinetobacter sp. PK1 bacteria was investigated in batch experiments with various concentrations of phenol. The bacterial cells were immobilized by attachment to or encapsulation in silica. The encapsulated bacteria had the highest phenol degradation rate, especially at initial phenol concentrations between 7500 and 10 000 mg l?1. Additionally, the immobilized cells could continuously degrade phenol for up to 55 days. Conclusions: The encapsulation of a mixed culture of Methylobacterium sp. NP3 and Acinetobacter sp. PK1 is an effective and easy technique that can be used to improve bacterial stability and phenol degradation. Significance and Impact of the Study: Wastewater from various industries contains high concentrations of phenol, which can cause wastewater treatment failure. Silica‐immobilized bacteria could be applied in bioreactors to initially remove the phenol, thereby preventing phenol shock loads to the wastewater treatment system.  相似文献   

18.
An electrochemical system has been devised to measure phenol concentrations in aqueous solutions. The unit employs the immobilized enzyme, tyrosinase, to oxidize phenol in the presence of saturating levels of oxygen. The oxidation product, ortho-benzoquinone, is then chemically reduced in the presence of an excess of ferrocyanide ions. The coupled oxidation of ferrocyanide ions to ferricyanide ions results in a measurable potential difference in the electrochemical system. The resulting zero current potentials in these steady-state potentiometric measurements are shown to be directly proportional to the logarithm of phenol concentration over the range of 3.8 × 10?7 to 1 × 10?4m. The results of studies carried out with alternate substrates for the enzyme and interfering compounds are also presented.  相似文献   

19.
A mediator-free phenol biosensor was developed. The low-isoelectric point tyrosinase was adsorbed on the surface of high-isoelectric point ZnO nanoparticles (nano-ZnO) facilitated by the electrostatic interactions and then immobilized on the glassy carbon electrode via the film forming by chitosan. It was found that the nano-ZnO matrix provided an advantageous microenvironment in terms of its favorable isoelectric point for tyrosinase loading and the immobilized tyrosinase retaining its activity to a large extent. Moreover, there is no need to use any other electron mediators. Phenolic compounds were determined by the direct reduction of biocatalytically generated quinone species at -200mV (vs. saturated calomel electrode). The parameters of the fabrication process and the various experimental variables for the enzyme electrode were optimized. The resulting biosensor can reach 95% of steady-state current within 10s, and the sensitivity was as high as 182microAmmol(-1)L. The linear range for phenol determination was from 1.5x10(-7) to 6.5x10(-5)molL(-1) with a detection limit of 5.0x 10(-8)molL(-1) obtained at a signal/noise ratio of 3. In addition, the apparent Michaelis-Menten constant (K(m)(app)) and the stability of the enzyme electrode were estimated. The performance of the developed biosensor was compared with that of biosensors based on other immobilization matrices.  相似文献   

20.
A mathematical model for the hydrolysis reaction of p‐nitro phenol laurate catalyzed by a lipase immobilized in a membrane was developed. In an earlier study this model reaction was found to show very different reaction rates when it was performed in aqueous micellar solution with free enzyme and with membrane immobilized enzyme. It was assumed that a local accumulation of substrate in the membrane is responsible for the observed rate enhancement. The conversion of p‐nitro phenol ester within the membrane was modeled by considering a combination of the convective flow through poly(vinyl alcohol) membrane pores, concentration polarization of substrate containing micelles at the membrane surface and the kinetics of the reaction with free enzymes. It was demonstrated that the model offered a comprehensive understanding of the interaction of the involved phenomena. The modeling results are in good agreement with the experimental data from 10 runs with different enzyme and substrate concentrations. The substrate concentration at the membrane surface increased by up to a factor of 3 compared to the feed concentration. This effect explains the observed rate enhancement. Moreover, the model was used to determine the unknown parameters, i.e., the intrinsic retention and the mass transfer coefficient, by fitting the model to the experimental data. The model may also be used to calculate the optimum operating conditions and design parameters of such a reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号