首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysozyme has been immobilized on chitosan, a polyaminosaccharide, without using any intermediate reagent. The best pH conditions for operating the chitosan columns have been determined and the best eluting agent was found to be a 2% solution of propylamine. The lysozyme activity was determined after reacting lysozyme with the product of glycolchitin and Remazol Brilliant Blue R. The recovery of lysozyme from chicken egg white yields lysozyme with 55% activity.  相似文献   

2.
Ultrasound sonication has been utilized to produce fragmentation of chitosan polymer and hence increase the chitosan surface area, making it more accessible to interactions with proteins. In this context, we have investigated the catalytic properties of lipases from different sources immobilized onto ultrasound-treated chitosan (ChiS) pre-activated with glutaraldehyde (ChiS-G). Atomic force microscopy indicated that ChiS-G displays a more cohesive frame without the presence of sheared/fragmented structures when compared with ChiS, which might be attributed to the cross-linking of the polysaccharide chains. The immobilization efficiency onto ChiS-G and ChiS were remarkably higher than using conventional beads. In comparison with the free enzymes, lipases immobilized onto ChiS show a slight increase of apparent Km and decrease of apparent Vmax. On the other hand, immobilization onto ChiS-G resulted in an increase of Vmax, even though a slight increase of Km was also observed. These data suggest that the activation of chitosan with glutaraldehyde has beneficial effects on the activity of the immobilized lipases. In addition, the immobilization of the lipases onto ChiS-G displayed the best reusability results: enzymes retained more than 50% of its initial activity after four reuses, which might be attributed to the covalent attachment of enzyme to activated chitosan. Overall, our findings demonstrate that the immobilization of lipases onto ultrasound-treated chitosan supports is an effective and low-cost procedure for the generation of active immobilized lipase systems, being an interesting alternative to conventional chitosan beads.  相似文献   

3.
Keratinases are exciting keratin-degrading enzymes; however, there have been relatively few studies on their immobilization. A keratinolytic protease from Chryseobacterium sp. kr6 was purified and its partial sequence determined using mass spectrometry. No significant homology to other microbial peptides in the NCBI database was observed. Certain parameters for immobilization of the purified keratinase on chitosan beads were investigated. The production of the chitosan beads was optimized using factorial design and surface response techniques. The optimum chitosan bead production for protease immobilization was a 20 g/l chitosan solution in acetic acid [1.5% (v/v)], glutaraldehyde ranging from 34 g to 56 g/l, and an activation time between 6 and 10 h. Under these conditions, above 80% of the enzyme was immobilized on the support. The behavior of the keratinase loading on the chitosan beads surface was well described using the Langmuir model. The maximum capacity of the support (qm) and dissociation constant (Kd) were estimated as 58.8 U/g and 0.245 U/ml, respectively. The thermal stability of the immobilized enzyme was also improved around 2-fold, when compared with that of the free enzyme, after 30 min at 65 degrees C. In addition, the activity of the immobilized enzyme remained at 63.4% after it was reused five times. Thus, the immobilized enzyme exhibited an improved thermal stability and remained active after several uses.  相似文献   

4.
Proteins carrying genetically attached polyhistidine tails have been purified using affinity precipitation with metal chelates. DNA fragments encoding four or five histidine residues have been genetically fused to the oligomeric enzymes lactate dehydrogenase (Bacillus stearothermophilus), beta-glucoronidase (Escherichia coli), and galactose dehydrogenase (Pseudomonas fluorescens) as well as to the monomeric protein A (Staphylococcus aureus). The chimeric genes were subsequently expressed in E. coli. The engineered enzymes were successfully purified from crude protein solutions using ethylene glycolbis (beta-aminoethyl) tetraacetic acid (EGTA) charged with Zn(2+) as precipitant, whereas protein A, carrying only one attached histidine tail, did not precipitate. However, all of the engineered proteins could be purified on immobilized metal affinity chromatography (IMAC) columns loaded with Zn(2+). The potential of using the same histidine tails for site-specific immobilization of proteins was also investigated. The enzymes were all catalytically active when immobilized on IMAC gels. For instance, immobilized lactate dehydrogenase, carrying tails composed of four histidine residues, displaced 83% of the soluble enzyme activity. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
α-Galactosidase (EC 3.2.1.22) from Pycnoporus cinnabarinus was immobilized on chitosan beads, BCW 1000, and crosslinked chitosan beads, BCW 3000 and 3500, of three different sizes, which were untreated or previously treated with glutaraldehyde. The activity yields of the immobilized enzymes were between 25 to 45%, except for glutaraldehyde-untreated B BCW 1000. Leakage of the enzyme with increasing ionic strength was observed in glutaraldehyde-untreated BCW 1000 and 3000. The α-galactosidases immobilized on glutaraldehyde-treated BCW 3000 and 3500 were active at pH 3–6 and at 70–80°C, and stable between pH 3 and 9, and below 70°C. The immobilized α-galactosidase was continuously used for 30 days to hydrolyze raffinose in beet sugar molases.  相似文献   

6.
Chitosanolytic enzymes from Enterobacter sp. G-1 were immobilized on various carriers to continuously hydrolyze chitosan. Four different carriers were tested: FE-3901 (strong basic anion exchange resin, ionic binding), glutaraldehyde-treated FE-4612 (weak basic anion exchange resin, cross-linking), Chitopearl (chitosan beads), and alginate calcium. Glutaraldehyde-treated FE-4612 and Chitopearl immobilized more protein than the others. The enzyme immobilized on FE-3901 had the greatest activity. The activity of enzyme immobilized on FE-3901 decreased rapidly when exposed to a continuous flow of 1% chitosan. The enzyme immobilized with Chitopearl retained more than 50% of its original activity after 17 days, and the activity was fully restored by re-immobilization.  相似文献   

7.
Chitosanolytic enzymes from Enterobacter sp. G-1 were immobilized on various carriers to continuously hydrolyze chitosan. Four different carriers were tested: FE-3901 (strong basic anion exchage resin, ionic binding), glutaraldehyde-treated FE-4612 (weak basic anion exchange resin, cross-linking), Chitopearl (chitosan beads), and alginate calcium. Glutaraldehyde-treated FE-4612 and Chitopearl immobilized more protein than the others. The enzyme immobilized on FE-3901 had the greatest activity. The activity of enzyme immobilized on FE-3901 decreased rapidly when exposed to a continuous flow of 1% chitosan. The enzyme immobilized with Chitopearl retained more than 50% of its original activity after 17 days, and the activity was fully restored by re-immobilization.  相似文献   

8.
All the disciplines of science, especially biotechnology, have given continuous attention to the area of enzyme immobilization. However, the structural support made by material science intervention determines the performance of immobilized enzymes. Studies have proven that nanostructured supports can maintain better catalytic performance and improve immobilization efficiency. The recent trends in the application of nanofibers using natural polymers for enzyme immobilization have been addressed in this review article. A comprehensive survey about the immobilization strategies and their characteristics are highlighted. The natural polymers, e.g., chitin, chitosan, silk fibroin, gelatin, cellulose, and their blends with other synthetic polymers capable of immobilizing enzymes in their 1D nanofibrous form, are discussed. The multiple applications of enzymes immobilized on nanofibers in biocatalysis, biosensors, biofuels, antifouling, regenerative medicine, biomolecule degradation, etc.; some of these are discussed in this review article.  相似文献   

9.
Extracellular bacterial lipases are promising biocatalysts for industry, because they are stable and active enzymes from easily available sources. A lipase from Bacillus stearothermophilus MC7 was immobilized on four polymer carriers by physical adsorption: chitosan, DEAE-cellulose, polypropylene, and polyurethane. The four biocatalysts differ in their hydrolytic activity against long-chain and short-chain triglycerides. Lipase MC7 immobilized on polypropylene (PP-MC7) stands out with its high activity against tributirin. According to the preliminary data, all four preparations were suitable for application in the test reaction of acidolysis of triolein with caprylic acid. The highest degree of conversion of the initial triolein was achieved in the presence of PP-MC7 preparation—50%. But variation of the reaction conditions did not lead to synthesis of the target di-substituted product (dicapryloyl-oleoylglycerol, COC). Reaction proceeds as a selective mono-substitution in the glycerol backbone.  相似文献   

10.
An effective approach to the stabilization of hydrolytic enzymes (alkaline proteinase and cellulases) via the complex formation with chitosan for their further use as detergent components has been developed. Interaction with chitosan results in a 35–50% increase in the level of catalytic activity of the enzymes after incubation for 60 min under the conditions of detergent use (alkaline pH, increased temperature, the presence of anionic surfactants) as compared to the system in the absence of chitosan both due to the enzyme stabilization and the increase of the starting level of catalytic activity. A twofold decrease of the enzyme inactivation constant is observed under the aforementioned conditions in the case of alkaline proteinase. In the case of cellulase preparation, the method for the control of the concentration of the active enzyme in the system modeling synthetic detergents has been suggested. The method is based on the enzymatic destruction of the stabilizing agent, chitosan, by enzymes of the cellulase complex. The destruction of chitosan removed the stabilizing effect, thus resulting in the inactivation of cellulases. The developed approaches allow for the widening of the field of the possible application of enzymes as detergent components.  相似文献   

11.
Equal weights of chitosan and ZrO2 powders were mixed in acetic acid solution to prepare the composite beads. They were then cross-linked with glutaraldehyde and stored with and without freeze-drying before use. The physicochemical properties of acid phosphatase immobilized on four types of the supports (wet/dried pure chitosan beads, wet/dried chitosan-ZrO2 composite beads) were compared. Various parameters including glutaraldehyde concentration, cross-linking time, enzyme concentration, temperature, and pH on enzyme activity were studied. It was shown that the activity yield of enzyme immobilized on the dried chitosan-ZrO2 beads was the highest, and the relative activity remained above 83.2% within pH 2.9-5.8. Regardless of wet or dried beads, the Michaelis constant KM and maximum rate of reaction Vmax of acid phosphatase immobilized on chitosan-ZrO2 composite beads were 1.8 times larger than those on pure chitosan beads. Of the four immobilized enzymes, the use of wet chitosan-ZrO2 bead as the support showed the lowest thermal deactivation energy (78 kJ mol(-1)).  相似文献   

12.
Numerous enzymes of biotechnological importance have been immobilized on magnetic nanoparticles (MNP) via random multipoint attachment, resulting in a heterogeneous protein population with potential reduction in activity due to restriction of substrate access to the active site. Several chemistries are now available, where the modifier can be linked to a single specific amino acid in a protein molecule away from the active-site, thus enabling free access of the substrate. However, rarely these site-selective approaches have been applied to immobilize enzymes on nanoparticles. In this review, for the first time, we illustrate how to adapt site-directed chemical modification (SDCM) methods for immobilizing enzymes on iron-based MNP. These strategies are mainly chemical but may additionally require genetic and enzymatic methods. We critically examine each method and evaluate their scope for simple, quick, efficient, mild and economical immobilization of enzymes on MNP. The improvements in the catalytic properties of few available examples of immobilized enzymes are also discussed. We conclude the review with the applications and future prospects of site-selectively modified magnetic enzymes and potential benefits of this technology in improving enzymes, including cold-adapted homologues, modular enzymes, and CO2-sequestering, as well as non-iron based nanomaterials.  相似文献   

13.
Recent research in our group has shown that mixture-casting Nafion with quaternary ammonium bromides can increase the electrochemical flux of redox couples through the membrane and allow for larger redox species to diffuse to the electrode surface. The research has also suggested that when these salts are cast with Nafion micellar pore size is changing. Therefore, it was proposed that the quaternary ammonium salts could be employed to tailor the structure of the Nafion membrane for immobilizing enzymes in the polymer. For cations with a high affinity for the sulfonic acid groups of Nafion, the modified structure of Nafion can also help to stabilize the enzyme and increase activity by providing a protective outer shell and an ideal chemical environment that resists a decrease in pH within the pore structure. This research examines the ability to immobilize dehydrogenase enzymes in Nafion that has been modified with quaternary ammonium bromides. Fluorescence assays, fluorescence microscopy, and cyclic voltammetric studies were employed to analyze the ability to immobilize an enzyme within the membrane, to determine the activity of the immobilized enzyme and to examine the transport of coenzyme within the membrane. Dehydrogenase enzymes immobilized in tetrabutylammonium bromide/Nafion membranes have shown high catalytic activity and enzyme active lifetimes of greater than 45 days. A variety of dehydrogenase enzymes have been successfully immobilized in the membrane, including: alcohol dehydrogenase, aldehyde dehydrogenase, glucose dehydrogenase, and lactic dehydrogenase.  相似文献   

14.
曹文娟  袁海生 《菌物学报》2016,35(3):343-354
采用壳聚糖交联法和海藻酸钠-壳聚糖包埋交联法固定化桦褶孔菌产生的漆酶,探讨最佳固定化条件,固定化漆酶的温度,pH稳定性及操作稳定性,并以两种固定化酶分别对4种染料进行了降解.结果表明:(1)壳聚糖交联法固定化漆酶的最佳条件为:壳聚糖2.5%,戊二醛7%,交联时间2h,固定化时间5h,给酶量1g壳聚糖小球:1mL酶液(1U/mL),固定化效率56%;(2)海藻酸钠-壳聚糖包埋交联法固定化漆酶的最佳条件为:海藻酸钠浓度4%,壳聚糖浓度0.7%,氯化钙浓度5%,戊二醛浓度0.6%,给酶量4mL 4%海藻酸钠:1mL酶液(1U/mL),固定化效率高达86%;(3)固定化的漆酶相比游离漆酶有更好的温度和pH稳定性;(4)比较两种固定化漆酶,海藻酸钠-壳聚糖包埋交联法固定化酶的温度及酸度稳定性要优于壳聚糖固定化酶,但可重复操作性要弱于后者,两者重复使用8次后的剩余酶活比率分别为71%及64%;(5)两种固定化酶对所选的4种不同结构的合成染料均有较好的降解效果,其中壳聚糖固定化酶对茜素红的降解效果及重复使用性极佳,重复降解40mg/L的茜素红10次,降解率仍保持在100%.  相似文献   

15.
The present work was aimed at developing stability enhanced silica gel-supported macroporous chitosan membrane for immobilization of enzymes. The membrane was surface modified using various cross-linking agents for covalent immobilization of enzyme Bovine serum albumin. The results of FT-IR, UV–vis, and SEM analyses revealed the effect of cross-linking agents and confirmed the formation of modified membranes. The presence of silica gel as a support could provide a large surface area, and therefore, the enzyme could be immobilized only on the surface, and thus minimized the diffusion limitation problem. The resultant enzyme immobilized membranes were also characterized based on their activity retention, immobilization efficiency, and stability aspects. The immobilization process increased the activity of immobilized enzyme even higher than that of total (actual) activity of native enzyme. Thus, the obtained macroporous chitosan membranes in this study could act as a versatile host for various guest molecules.  相似文献   

16.
A strain of Bacillus sp (Bacillus R-4) produces a protease and a carbohydrolase both of which have the ability to lyse Rhizopus cell walls. Of the enzymes, the carbohydrolase has been purified to an ultracentrifugally and electrophoretically homogeneous state, and identified as a chitosanase. The enzyme was active on glycol chitosan as well as chitosan. Molecular weight of the purified enzyme was estimated as 31 000 and isoelectric point as pH 8.30. The enzyme was most active at pH 5.6 and at 40 degrees C with either Rhizopus cell wall or glycol chitosan as substrate, and was stable over a range of pH 4.5 to 7.5 at 40 degrees C for 3 h. The activity was lost by sulfhydryl reagents and restored by either reduced glutathione of L-cysteine. An abrupt decrease in viscosity of the reaction mixture suggested an endowise cleavage of chitosan by this enzyme.  相似文献   

17.
A dual enzyme system of exo-maltotetraohydrolase [EC 3.2.1.60] and pullulanase [EC 3.2.1.41] was studied for the continuous production of maltotetraose. Porous chitosan beads were selected from among many carriers as the best carrier to immobilize both enzymes.

The properties of the immobilized enzymes were examined and compared with those of the native enzymes. For exo-maltotetraohydrolase, the optimum pH of the immobilized enzyme shifted slightly to the acidic side and the pH stability was improved on the alkaline side. The optimum temperature of the immobilized enzyme increased by about 15°C and thermostability was improved by about 10°C. As for pullulanase, very little difference in thermostability was observed.

The effects of operating conditions on the continuous production of maltotetraose using exo- maltotetraohydrolase immobilized on the porous chitosan beads were examined. Porous chitosan beads were recognized to be superior to Diaion HP-50.

The continuous production of maltotetraose was accomplished using the dual immobilized enzyme system. The dual enzyme system proved to be effective to increase the maltotetraose content in the product. A stable operation was successfully continued for more than 60 days.  相似文献   

18.
1. alpha-Amylase and alpha-chymotrypsin have been immobilized by covalent attachment to mercaptohydroxypropyl ether agarose gel. The technique involves two steps: (a) thiolation of the enzymes by methyl 3-mercaptopropioimidate, (b) coupling of the thiolated enzymes to a mixed disulphide derivative of agarose obtained by reacting mercaptohydroxypropyl ether agarose with 2,2'-dipyridyl disulphide. 2. The immobilization technique can be performed so that most of the inherent activity of the enzymes is conserved. However, diffusion limitations and steric factors prevent full manifestation of the immobilized activities. 3. Immobilized alpha-amylase was used in a packed-bed reactor for the continuous hydrolysis of starch. When the enzymically active gel had lost its activity it could be regenerated in situ by reductive uncoupling of the inactive protein and attachment of a new portion of thiolated alpha-amylase.  相似文献   

19.
Thermolysin (Bacillus thermoproteolyticus neutral proteinase, EC 3.4.24.4) has been immobilized by radiation polymerization of hydrophilic and hydrophobic monomers, and its properties, such as enzyme activity, thermal stability and durability, have been studied. The activity of the immobilized enzymes increased with an increase in the hydrophilicity of the polymer matrix and with a decrease in monomer concentration. Immobilization with hydrophilic monomers increased the thermal stability of the enzymes, but the thermal stability of the enzymes immobilized with hydrophobic monomers was comparable with that of native enzymes. The durability of the immobilized enzymes was examined by continuous hydrolysis of casein; enzymes immobilized with a high concentration (90%) of hydrophilic monomers appeared to be stabilized and could be used for long times.  相似文献   

20.
Highly selective chromatography of microsomal enzymes has been carried out on columns of immobilized cytochrome b5 that was obtained by detergent solubilization (d-b5) of the complete amphipathic molecule. Several partially purified isozymes of cytochrome P-450 are resolved on d-b5 columns, and one high-affinity isozyme has been readily purified to homogeneity. Chromatographic selectivity and correlation of elution order of isozymes of cytochrome P-450 with direct spectral measurements of affinity constants suggests affinity chromatography on d-b5 columns. Substantial one-step enrichments of NADH-cytochrome-b5 reductase and an unstable cytochrome b5-dependent oxidase of cholesterol synthesis, 4-methyl sterol oxidase, have been obtained on d-b5 columns which further supports this conclusion. Comparison of chromatographic behavior on columns of immobilized cytochrome b5 that was obtained by trypsin solubilization (t-b5) with d-b5 columns shows marked differences which must be attributed to the absence of the hydrophobic domain of the t-b5 molecule. NADH-cytochrome-b5 reductase and the high affinity isozyme of cytochrome P-450 purified by d-b5 affinity chromatography are poorly retained on t-b5 columns. A different cytochrome P-450 isozyme with lower affinity for cytochrome b5 is only retained on d-b5 columns. Cytochrome-P-450 reductase is not retained on either column. Because affinity chromatography is suggested on d-b5 columns, the procedure may be generally applicable for predicting protein-protein interactions of microsomal electron transport components that either donate electrons to, or receive electrons from, cytochrome b5. In addition, the procedure should have considerable utilitarian application for enzyme enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号