首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for isolating intact mitochondria from Torulopsis candida grown on glucose and hexadecane was developed. The isolated mitochondria were capable of oxidizing substrates of the di- and tricarboxylic acid cycle and of showing Chance respiration control. The morphological examination of the fractions showed that the major portion of mitochondria from yeast grown on glucose were in the condensed form whereas mitochondria from yeast grown on hexadecane were in the orthodoxal form.  相似文献   

2.
Plasma membranes from Candida tropicalis grown on glucose or hexadecane were isolated using a method based on the difference in surface charge of mitochondria and plasma membranes. After mechanical disruption of the cells, a fraction consisting of mitochondrial and plasma membrane vesicles was obtained by differential centrifugation. Subsequently the mitochondria were separated from the plasma membrane vesicles by aggregation of the mitochondria at a pH corresponding to their isoelectric point. Additional purification of the isolated plasma membrane vesicles was achieved by osmolysis. Surface charge densities of mitochondria and plasma membranes were determined and showed substrate-dependent differences. The isolated plasma membranes were morphologically characterized by electron microscopy and, as a marker enzyme, the activity of Mg2+-dependent ATPase was determine. By checking for three mitochondrial marker enzymes the plasma membrane fractions were estimated to be 94% pure with regard to mitochondrial contamination.  相似文献   

3.
Isolated plasma membranes from the yeast Candida tropicalis grown on two different carbon sources (glucose or hexadecane), had similar contents of protein (60% of total dry weight), lipid (21-24%) and carbohydrates (16-21%). Sodium dodecyl sulphate gel electrophoresis of the membrane proteins revealed 17 and 19 protein bands, respectively, for glucose and hexadecane grown cells. There were marked differences in RF values and relative peak heights between the two gels. Sterols and free fatty acids were the major components of the plasma membrane lipids. Phospholipid content was less than 2% of total plasma membrane lipids. Membrane microviscosity, as determined by fluorescence polarization, was very high (16.6 P). Fatty acid determination of membrane lipids by gas chromatography showed a significant increase of C16 fatty acids in plasma membranes of cells grown on hexadecane. Reduced-oxidized difference spectra demonstrated the presence of a b-type cytochrome in both Saccharomyces cerevisiae and C. tropicalis plasma membranes. Its concentration in C. tropicalis plasma membranes was three-fold greater in cells grown on hexadecane than in glucose grown cells.  相似文献   

4.
Plasma membranes from Candida tropicalis grown on glucose or hexadecane were isolated using a method based on the difference in surface charge of mitochondria and plasma membranes.After mechanical disruption of the cells, a fraction consisting of mitochondrial and plasma membrane vesicles was obtained by differential centrifugation.Subsequently the mitochondria were separated from the plasma membrane vesicles by aggregation of the mitochondria at a pH corresponding to their isoelectric point. Additional purification of the isolated plasma membrane vesicles was achieved by osmolysis. Surface charge densities of mitochondria and plasma membranes were determined and showed substrate-dependent differences.The isolated plasma membranes were morphologically characterized by electron microscopy and, as a marker enzyme, the activity of Mg2+-dependant ATPase was determined.By checking for three mitochondrial marker enzymes the plasma membrane fractions were estimated to be 94% pure with regard to mitochondrial contamination.  相似文献   

5.
Electron-microscopic examination of the ultrastructure of Torulopsis candida cells grown on glucose and hexadecane revealed a well-developed network of canals in the cell wall of yeasts grown on hexadecane. These canals appeared in the non-adapted cells at the initial hours of the cultivation and completed their formation at the end of the logarithmic phase. The investigation by the freeze-etching showed the exocytosis of "secretory granules" to take place at the periplasma of the cells, and the morphological relationship of the granules to the canals in the cell wall.  相似文献   

6.
7.
8.
A comparative analysis of the cellular and extracellular lipids of Acinetobacter species HO1-N indicated basic physiological differences in hexadecane-grown cells. The cellular lipids obtained from hexadecane-grown cells were characterized by 3- and 18-fold increases in the phospholipid fraction and the mono- and diglyceride fraction, respectively, over that obtained from nutrient broth-yeast extract-grown cells. The cellular-associated pools of hexadecane were shown to comprise approximately 8% of the dry cell weight of hexadecane-grown cells. The extracellular lipids obtained from the culture broths of hexadecane-grown cells were comprised of triglyceride, mono- and diglyceride, free fatty acid, and wax ester. These lipids were either absent or present in minor concentrations in the culture broths of nutrient broth-yeast extract-grown cells. The exponential growth of Acinetobacter sp. on hexadecane was characterized by the significant accumulation of free fatty acid, monoglyceride, and diglyceride in the culture medium. Wax ester was shown to represent a minor portion of the extracellular lipids during the exponential growth phase, appearing in significant proportion only after the culture had entered the stationary phase of growth.  相似文献   

9.
10.
11.
12.
Summary Rates of oxygen uptake and the oxygen demand during growth of Candida tropicalis on hexadecane and glucose were determined in batch experiments. Oxygen demand was 2.5 fold higher for the synthesis of one unit of cell mass from hydrocarbon than from glucose. On the other hand specific respiration is of the same order of magnitude for both substrates, e.g. 12 mmoles O2xh-1xg-1 (dry weight) and seems to be a constant of this organism. Higher rates of oxygen supply into the medium had no effect on the specific rates of respiration. Specific growth rates on hexadecane were 2.4 times lower than on glucose. It is concluded, that rates of synthesis of cell components are controlled by the overall capacity of the respiratory pathways.  相似文献   

13.
A microscope reactor was used to study online the dynamics of gel immobilized cell systems. The applicability of the reactor is demonstrated by a study of the growth kinetics of Saccharomyces cerevisiae entrapped in 2% calcium alginate. The specific growth rates of single immobilized cells and free cells were measured. The growth of a microcolony in Ca-alginate was followed and the specific growth rate of the cells in the microcolony determined. A simple growth model was used to estimate the cell volume fraction of the yeast cells in the microcolony. As internal and external mass transfer limitations can be neglected and immobilized cell growth rates were found to be identical to those of free cells, one may conclude that immobilization does not influence cell growth under our experimental conditions.  相似文献   

14.
Hypoglycaemia which develops in starved newborn rats (0.15 +/- 0.01 mg/ml) is reversed by feeding medium-chain triglycerides (0.66 +/- 0.05 mg/ml). Despite similar glycaemia (0.71 +/- 0.07 mg/ml) starved newborns infused with glucose (10.7 mg/min/kg) show a 30% higher glucose turnover rate than medium-chain triglyceride fed animals (14.1 +/- 0.6 versus 10.6 +/- 0.3 mg/min/kg, p less than 0.01). For a comparable [6-3H]glucose turnover rate (10.5 +/- 0.3 mg/min/kg), glucose-infused (5.25 mg/min/kg) newborns have a 30% lower glycaemia (0.50 +/- 0.03 mg/ml, p less than 0.01) than medium-chain triglyceride-fed newborns. Thus, medium chain triglyceride feeding leads to a 30% decreased capacity of the tissues to utilize glucose. For a similar glucose turnover rate, medium-chain triglyceride-fed newborns have a higher blood lactate concentration than glucose-infused newborns (0.26 +/- 0.03 versus 0.15 +/- 0.02 mg/ml). However, in medium-chain triglyceride-fed newborns, the increase of blood lactate is not only due to the Cori cycle, as glucose recycling is less increased than glucose production. Thus medium-chain triglyceride increases the release of gluconeogenic precursors which are not derived from blood glucose. In presence of a glucose infusion (15.25 mg/min/kg) producing hyperglycaemia (1.35 +/- 0.05 mg/ml), endogenous glucose production is suppressed by only 37%. If 3-mercaptopicolinate, an inhibitor or gluconeogenesis, is given concomitantly, hyperglycaemia is prevented (0.72 +/- 0.08 mg/ml) and endogenous glucose production is suppressed. Glucose infusion in the hypoglycaemic newborn rat might thus lead to a precarious glucose homeostasis.  相似文献   

15.
16.
Summary The production of organic acids (acetate, lactate, and propionate) by the anaerobic, ruminal bacteriumSelenomonas ruminantium HD4 was investigated in both glucose-limited and glucose-sufficient (phosphate-limited) continuous cultures. The fermentation pattern of products exhibited a shift upon release of glucose limitation from acetate and propionate to lactate at a dilution rate of 0.2 h–1. Glucose sufficiency brought about two-to fourfold increase in specific glucose utilization rate, lactate productivity, and lactate yield relative to glucose-limited growth conditions. The increased lactate production under glucose-sufficient growth conditions was attributed to the overutilization of excess glucose.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

17.
Cladosporium (Amorphotheca) resinae was grown in shake culture on glucose, n-dodecane, or n-hexadecane. Growth was most rapid on glucose, and more acid accumulated in the medium than in n-alkane-grown cultures. Neutral lipid was the major lipid fraction and triglycerides were the only extracellular neutral lipids detected. Dodecanoic (lauir) acid was the predominant fatty acid (greater than 60%) in neutral lipids from all three media, with lesser amounts of tetradecanoic, hexadecanoic, and octadecanoic acids. Extracellular phospholipids identified were phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and cardiolipin or a cardiolipin-like compound. Phospholipids from all three media contained dodecanoic acid as their principle fatty acid. Dodecanoic acid was the only extracellular free fatty acid detected. Glucose medium contained acetic, glyoxylic, and glycolic acids and an unidentified organic acid which may contribute to the lower pH in cultures after growth on glucose. In all classes of extracellular lipids the fatty acids do not correspond to the fatty acids previously determined to be associated with cellular lipids. Moreover, the fatty acids of extracellular lipids do not reflect the chain length of the n-alkane growth substrate.  相似文献   

18.
Total lipids were extracted from the cells of Candida utilis grown at a constant population density in continuous culture. At different steady states, the environment was controlled with respect to dissolved oxygen and glucose concentrations, pH and temperature. Gas liquid chromatography was used to follow quantitative and qualitative changes in the fatty acid composition of the cells. Increasing glucose concentration resulted in higher lipid content; high oxygen concentrations increased the level of polyunsaturated fatty acids. The most significant changes in fatty acid composition took place when both glucose and oxygen concentrations were high, and under these conditions the amount, of linolenic acid was at its highest value.  相似文献   

19.
Specifically labelled14C-d-glucose was used to estimate the percentage participation of glycolysis and pentose phosphate cycle in the glucose catabolism ofCandida utilis andSaccharomyces cerevisiae. The two yeasts were cultivated at various growth rates (0.1 to 0.5 h?1) in a chemostat on synthetic medium limited with glucose under aerobic conditions. The results show a considerable increase in the percentage participation of pentose phosphate cycle in the glucose catabolized bySaccharomyces cerevisiae with the increase in specific growth rate. However, inCandida utilis, the specific growth rate does not influence significantly the part of glucose catabolized via pentose phosphate cycle, but its absolute values are relatively higher than inSaccharomyces cerevisiae. A rough quantitative estimate indicates that a maximum of 60 to 72% of the assimilated glucose is catabolized through the pentose phosphate cycle while inSaccharomyces cerevisiae the percentage participation of the pentose phosphate cycle varies from 24 to 60% (maximum) and 9 to 34% (minimum).  相似文献   

20.
A halophilic thermotolerant yeast species, identified as Hansenula polymorpha Morais et Maia, was isolated from a mixed culture obtained from sea-water from the Arabian Gulf. The species grew on methanol at 25–42°C, pH 3.5–6.7, and in a medium compounded with 75% sea-water. Either thiamin HCl and biotin or yeast extract proved essential for growth. In shake flask studies a depression of the yield was observed when methanol concentration increased; at concentrations in excess of 0.1%, v/v, inhibition of growth also occurred. In a batch culture grown in a 14 l fermenter, the values of Td, μ and Ys were found to be 3 h, 0.23 h−1 and 0.38, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号