首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Dynamic responses of cardiac sodium-calcium exchange current to changes of cytoplasmic calcium and MgATP were monitored and analyzed in giant membrane patches excised from guinea pig myocytes. Secondary dependencies of exchange current on cytoplasmic calcium are accounted for in terms of two mechanisms: (a) The sodium-dependent inactivation process, termed I1 modulation, is itself strongly modulated by cytoplasmic calcium. Recovery from the I1 inactivated state is accelerated by increasing cytoplasmic calcium, and the calculated rate of entrance into I1 inactivation is slowed. (b) A second modulation process, termed I2 modulation, is not sodium dependent. As with I1 modulation, the entrance into I2 inactivation takes place over seconds in the absence of cytoplasmic calcium. The recovery from I2 inactivation is a calcium-dependent transition and is rapid (< 200 ms) in the presence of micromolar free calcium. I1 and I2 modulation can be treated as linear, independent processes to account for most exchange modulation patterns observed: (a) When cytoplasmic calcium is increased or decreased in the presence of high cytoplasmic sodium, outward exchange current turns on or off, respectively, on a time scale of multiple seconds. (b) When sodium is applied in the absence of cytoplasmic calcium, no outward current is activated. However, the full outward current is activated within solution switch time when cytoplasmic calcium is applied together with sodium. (c) The calcium dependence of peak outward current attained upon application of cytoplasmic sodium is shifted by approximately 1 log unit to lower concentrations from the calcium dependence of steady-state exchange current. (d) The time course of outward current decay upon decreasing cytoplasmic calcium becomes more rapid as calcium is reduced into the submicromolar range. (e) Under nearly all conditions, the time courses of current decay during application of cytoplasmic sodium and/or removal of cytoplasmic calcium are well fit by single exponentials. Both of the modulation processes are evidently affected by MgATP. Similar to the effects of cytoplasmic calcium, MgATP slows the entrance into I1 inactivation and accelerates the recovery from inactivation. MgATP additionally slows the decay of outward exchange current upon removal of cytoplasmic calcium by 2-10-fold, indicative of an effect on I2 inactivation. Finally, the effects of cytoplasmic calcium on sodium-calcium exchange current are reconstructed in simulations of the I1 and I2 modulation processes as independent reactions.  相似文献   

2.
Ion and voltage dependencies of sodium-calcium exchange current were studied in giant membrane patches from guinea pig ventricular cells after deregulation of the exchanger with chymotrypsin. (a) Under zero-trans conditions, the half-maximum concentration (Kh) of cytoplasmic calcium (Cai) for activation of the isolated inward exchange current decreased as the extracellular sodium (Nao) concentration was decreased. The Kh of cytoplasmic sodium (Nai) for activation of the isolated outward exchange current decreased as the extracellular calcium (Cao) concentration was decreased. (b) The current-voltage (I-V) relation of the outward exchange current with saturating concentrations of Nai and Cao had a shallow slope (twofold change in approximately 100 mV) and a slight saturation tendency at very positive potentials. The outward current gained in steepness as the Nai concentration was decreased, such that the Kh for Nai decreased with depolarization. The decrease of Kh for Nai with depolarization was well described by a Boltzmann equation (e alpha.Em/26.6) with a slope (alpha) of -0.06. (c) Voltage dependence of the outward current was lost as the Cao concentration was decreased, and the Kh for Cao increased upon depolarization with a Boltzmann slope of 0.26. (d) The I-V relation of the inward exchange current, under zero-trans conditions, was also almost linear (twofold change in approximately 100 mV) and showed some saturation tendency with hyperpolarization as the Cai concentration was decreased. The Kh for Cai decreased with depolarization (Boltzmann slope, -0.10). Voltage dependence of the inward current was decreased in the presence of a high (300 mM) Nao concentration. (e) In the presence of both Na and Ca on both membrane sides, the I-V relations with saturating Nai show sigmoidal shape and clear saturation at positive potentials. Measured reversal potentials were close to the equilibrium potential expected for a 3 Na to 1 Ca exchange. (f) Nai and Cai interacted competitively with respect to the outward current, but in a mixed competitive-noncompetitive fashion with respect to the inward current. (g) Cai inhibited the outward exchange current in a voltage-dependent manner. The half-effective concentration for inhibition (Ki) by Cai increased upon depolarization with a Boltzmann slope of 0.32 in 25 mM Nai and 0.20 in 100 mM Nai. (h) Nai also inhibited the inward exchange current voltage dependently. The Ki decreased upon depolarization (Boltzmann slope, -0.11 at 3 microM Cai and -0.10 at 1.08 mM Cai).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The sodium-calcium exchange activity has been studied in sarcolemmal vesicles isolated from rat ventricles hypertrophied by pressure overload. 4 weeks after aortic stenosis the degree of hypertrophy varied from 30 to 70%. The Na+-dependent 45Ca2+ influx and efflux were up to 50% decreased and the sensitivity to Ca2+ was 13-fold lower in vesicles from hypertrophied heart as compared to those from normal heart. However, the Na+,K+-ATPase activity, the orientation of the vesicles and the passive Ca2+ permeability were found to be similar in the two heart groups. These results indicate that the sarcolemmal Na+/Ca2+ exchange activity could be qualitatively and/or quantitatively changed in hypertrophied rat heart.  相似文献   

4.
The purpose of this investigation was to study the effects of a distinct type of phospholipase C on sarcolemmal Na+-Ca2+ exchange. With this phospholipase C (Staphylococcus aureus), treatment of cardiac sarcolemmal vesicles resulted in a specific hydrolysis of membrane phosphatidylinositol. This hydrolysis of phosphatidylinositol also released two proteins (110 and 36 kDa) from the sarcolemmal membrane. Phospholipase C pretreatment of the sarcolemma resulted in an unexpected stimulation of Na+-Ca2+ exchange. The Vmax of Na+-Ca2+ exchange was increased but the Km for Ca2+ was not altered. This stimulation was specific to the Na+-Ca2+ exchange pathway. ATP-dependent Ca2+ uptake was depressed after phospholipase C treatment, but passive membrane permeability to Ca2+ was unaffected. Sarcolemmal Na+,K+-ATPase activity was not altered, whereas passive Ca2+ binding was modestly decreased after phospholipase C pretreatment. The stimulation of Na+-Ca2+ exchange after phosphatidylinositol hydrolysis was greater in inside-out vesicles than in a total population of vesicles of mixed orientation. This finding suggests that the cardiac sarcolemmal Na+-Ca2+ exchanger is functionally asymmetrical. The results also suggest that membrane phosphatidylinositol is inhibitory to the Na+-Ca2+ exchanger or, alternatively, this phospholipid may anchor an endogenous inhibitory protein in the sarcolemmal membrane. The observation that a transsarcolemmal Ca2+ flux pathway may be stimulated solely by phosphatidylinositol hydrolysis independently of phosphoinositide metabolic products like inositol triphosphate is novel.  相似文献   

5.
6.
Recombinant bovine cardiac sodium-calcium exchange (NCX1) in a baculovirus construct was used to infect cabbage looper larvae (Trichoplusia ni). Infected larvae were homogenized and larvae membrane vesicles were purified. Western blot analysis indicated the presence of recombinant NCX1 protein in vesicles from infected larvae but not in controls. Vesicles from infected larvae expressed high levels of NCX1 activity (1.7 nmol Ca2+/mg protein/s) while vesicles from control larvae had no activity. NCX1 in larvae vesicles was bidirectional. Kinetic analysis yielded a Vmax of 3.6 nmol Ca2+/mg protein/s and a Km for Ca of 4.2 microM. NCX1 activity was inhibited by the exchange inhibitory peptide with an IC50 of 4 microM. These data demonstrate a novel and efficient method for the expression of large amounts of active recombinant NCX1 protein that has general application for expression and analysis of recombinant membrane proteins.  相似文献   

7.
Na-Ca exchange activity in bovine cardiac sarcolemmal vesicles was stimulated up to 10-fold by preincubating the vesicles with 1 microM FeSO4 plus 1 mM dithiothreitol (DTT) in a NaCl medium. The increase in activity was not reversed upon removing the Fe and DTT. Stimulation of exchange activity under these conditions was completely blocked by 0.1 mM EDTA or o-phenanthroline; this suggests that the production of reduced oxygen species (H2O2, O2-.,.OH) during Fecatalyzed DTT oxidation might be involved in stimulating exchange activity. In agreement with this hypothesis, the increase in exchange activity in the presence of Fe-DTT was inhibited 80% by anaerobiosis and 60% by catalase. H2O2 (0.1 mM) potentiated the stimulation of Na-Ca exchange by Fe-DTT under both aerobic and anaerobic conditions; H2O2 also produced an increase in activity in the presence of either FeSO4 (1 microM) or DTT (1 mM), but it had no effect on activity by itself. Superoxide dismutase did not block the effects of Fe-DTT on exchange activity; however, the generation of O2-. by xanthine oxidase in the presence of an oxidizable substrate stimulated activity more than 2-fold. Hydroxyl radical scavenging agents (mannitol, sodium formate, sodium benzoate) did not attenuate the stimulation of activity observed with Fe-H2O2. Exchange activity was also stimulated by the simultaneous presence of glutathione (GSH; 1-2 mM) and glutathione disulfide (GSSG; 1-2 mM). Neither GSH nor GSSG was effective by itself and either 0.1 mM EDTA or o-phenanthroline blocked the effects on transport activity of the combination of GSH + GSSG. Treatment of the GSH and GSSG solutions with Chelex ion-exchange resin to remove contaminating transition metal ions reduced (by 40%) the degree of stimulation observed with GSH + GSSG. Full stimulating activity was restored to the Chelex-treated GSH and GSSG solutions by the addition of 1 microM Fe2+; Cu2+ was less effective than Fe2+ whereas Co2+ and Mn2+ were without effect. In the presence of 1 microM Fe2+, GSH alone produced a slight increase in transport activity, but this was markedly enhanced by the addition of Chelex-treated GSSG. The results indicate that stimulation of exchange activity requires the presence of both a reducing agent (DTT, GSH, O-.2, or Fe2+) and an oxidizing agent (H2O2, GSSG, and perhaps O2) and that the effects of these agents are mediated by metal ions (e.g. Fe2+).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
9.
High concentrations of cytosolic Na+ ions induce the time-dependent formation of an inactive state of the Na+/Ca2+ exchanger (NCX), a process known as Na+-dependent inactivation. NCX activity was measured as Ca2+ uptake in fura 2-loaded Chinese hamster ovary (CHO) cells expressing the wild-type (WT) NCX or mutants that are hypersensitive (F223E) or resistant (K229Q) to Na+-dependent inactivation. As expected, 1) Na+-dependent inactivation was promoted by high cytosolic Na+ concentration, 2) the F223E mutant was more susceptible than the WT exchanger to inactivation, whereas the K229Q mutant was resistant, and 3) inactivation was enhanced by cytosolic acidification. However, in contrast to expectations from excised patch studies, 1) the WT exchanger was resistant to Na+-dependent inactivation unless cytosolic pH was reduced, 2) reducing cellular phosphatidylinositol-4,5-bisphosphate levels did not induce Na+-dependent inactivation in the WT exchanger, 3) Na+-dependent inactivation did not increase the half-maximal cytosolic Ca2+ concentration for allosteric Ca2+ activation, 4) Na+-dependent inactivation was not reversed by high cytosolic Ca2+ concentrations, and 5) Na+-dependent inactivation was partially, but transiently, reversed by an increase in extracellular Ca2+ concentration. Thus Na+-dependent inactivation of NCX expressed in CHO cells differs in several respects from the inactivation process measured in excised patches. The refractoriness of the WT exchanger to Na+-dependent inactivation suggests that this type of inactivation is unlikely to be a strong regulator of exchange activity under physiological conditions but would probably act to inhibit NCX-mediated Ca2+ influx during ischemia. ischemia; cytosolic calcium concentration; cytosolic sodium concentration; cellular phosphatidylinositol-4,5-bisphosphate  相似文献   

10.
Calcium-dependent potassium (BK-type) Ca2+ and voltage-dependent K+ channels in chromaffin cells exhibit an inactivation that probably arises from coassembly of Slo1 alpha subunits with auxiliary beta subunits. One goal of this work was to determine whether the Ca2+ dependence of inactivation arises from any mechanism other than coupling of inactivation to the Ca2+ dependence of activation. Steady-state inactivation and the onset of inactivation were studied in inside-out patches and whole-cell recordings from rat adrenal chromaffin cells with parallel experiments on inactivating BK channels resulting from cloned alpha + beta2 subunits. In both cases, steady-state inactivation was shifted to more negative potentials by increases in submembrane [Ca2+] from 1 to 60 microM. At 10 and 60 microM Ca2+, the maximal channel availability at negative potentials was similar despite a shift in the voltage of half availability, suggesting there is no strictly Ca2+-dependent inactivation. In contrast, in the absence of Ca2+, depolarization to potentials positive to +20 mV induces channel inactivation. Thus, voltage-dependent, but not solely Ca2+-dependent, kinetic steps are required for inactivation to occur. Finally, under some conditions, BK channels are shown to inactivate as readily from closed states as from open states, indicative that a key conformational change required for inactivation precedes channel opening.  相似文献   

11.
Vesicles isolated from cardiac muscle exhibited Na,Ca exchange activity which can be measured by 45Ca influx or efflux of by 22Na efflux. The stoichiometry of Na,Ca exchange was 3 Na:1 Ca. These vesicles also exhibited ATP-dependent 22Na transport which was inhibited by ouabain indicating that this activity is due to the sodium pump, an activity which is thought to reside only in the sarcolemma. The addition of calcium caused rapid efflux of 22Na from vesicles loaded by ATP-dependent 22Na uptake indicating that the Na,Ca exchange is located in the same vesicles as the sodium pump and is thus also a sarcolemmal activity.  相似文献   

12.
Bepridil, an antiarrhythmic agent, inhibits Na-Ca exchange in cardiac sarcolemmal membrane vesicles (Ki = 30 microM) by a novel mechanism, different from that determined for amiloride analogues [Slaughter, R. S., Garcia, M. L., Cragoe, E. J., Jr., Reeves, J. P., & Karczorowski, G. J. (1988) Biochemistry (preceding paper in this issue)]. Bepridil causes partial inhibition of Nai-dependent Ca2+ uptake but complete block of Nao-dependent Ca2+ efflux. Inhibition of Na-Ca exchange is noncompetitive vs Ca2+ but competitive vs Na+ in both K+ and sucrose. Bepridil also blocks Ca-Ca exchange, with or without K+ present. However, K+ has two effects on inhibition: it reduces the potency of bepridil and causes inhibition to become partial. Inhibition of Ca-Ca exchange displays noncompetitive kinetics vs Ca2+ in either sucrose or K+. Dixon analyses of Na-Ca exchange inhibition caused by mixtures of bepridil and amiloride analogues demonstrate that these compounds produce a competitive interaction at a common carrier site that is evident only at low concentrations of amiloride inhibitors. Hill plots of bepridil inhibition of Na-Ca and Ca-Ca exchange display unitary Hill coefficients. These results indicate that bepridil interacts at only one substrate-binding site, the site selective for Na+, where amiloride analogues also preferentially interact. However, unlike amiloride, bepridil does not interact at the common Na+, Ca2+-binding site of the carrier.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Modification of the cholesterol content of highly purified cardiac sarcolemma from dog ventricles was accomplished by incubation with phosphatidylcholine liposomes containing various amounts of cholesterol. The degree of cholesterol enrichment could be varied by changing the liposomal cholesterol/phospholipid ratio or varying the liposome-membrane incubation time. Na+-Ca2+ exchange measured in cholesterol-enriched sarcolemmal vesicles was increased up to 48% over control values. The stimulation of Na+-Ca2+ exchange was associated with an increased affinity of the exchanger for Ca2+ (Km = 17 microM compared with Km = 22 microM for control preparations). Na+-Ca2+ exchange measured in cholesterol-depleted membrane preparations was decreased by 15%. This depressed activity was associated with a decreased affinity of the exchanger for Ca2+ (Km = 27 microM). These changes were not due to either a change in membrane permeability to Ca2+ or an increase in the amount of Ca2+ bound to sarcolemmal vesicles. The stimulating effect of cholesterol enrichment was specific to the Na+-Ca2+ exchange process since sarcolemmal Ca2+-Mg2+ ATPase activity was depressed 40% by cholesterol enrichment. Further, K+-p-nitrophenylphosphatase and Na+-K+ ATPase activities were depressed in both cholesterol-depleted and cholesterol-enriched sarcolemmal vesicles. In situ oxidation of membrane cholesterol completely eliminated Na+-Ca2+ exchange. These results suggest that cholesterol is intimately associated with Na+-Ca2+ exchange and may interact with the exchange protein and modulate its activity.  相似文献   

15.
The mechanism by which terminal guanidino nitrogen substituted analogues of amiloride inhibit Na-Ca exchange in purified cardiac sarcolemmal membrane vesicles has been investigated. These inhibitors block both Nai-dependent Ca2+ uptake and Nao-dependent Ca2+ efflux. Inhibition of Na-Ca exchange monitored in K+ is noncompetitive vs Ca2+ but competitive vs Na+. Substitution of sucrose for K+ results in mixed kinetics of inhibition vs Ca2+, suggesting a complex interaction between inhibitor and carrier under this condition. Amiloride derivatives also block two other modes of carrier action: Na-Na exchange is inhibited in a competitive fashion with Na+ and kinetics of Ca-Ca exchange inhibition are mixed vs Ca2+ in either sucrose or K+. However, Ca-Ca exchange inhibition can be alleviated by increasing K+ concentration. Dixon analyses of Na-Ca exchange block with mixtures of inhibitors suggest that these agents are interacting at more than one site. In addition, Hill plots of inhibition are biphasic with Hill coefficients of 1 and 2 at low and high inhibitor concentrations, respectively. These results indicate that amiloride derivatives are mechanism-based inhibitors that interact at two classes of substrate-binding sites on the carrier; at low concentration they bind preferentially to a site that is exclusive for Na+, while at higher concentration they also interact at a site that is common for Na+, Ca2+, and K+.  相似文献   

16.
Two clones (p17 and p13), each containing the complete coding sequence for the bovine cardiac Na+/Ca2+ exchanger, were obtained from a lambda gt10 cDNA library by screening with cDNA probes from the canine exchanger. The coding sequence of clone p17 was 92 and 98% identical to the canine cDNA at the nucleotide and amino acid levels, respectively. Nine of the 21 amino acid differences between the two exchangers were found within the 32-amino acid signal sequence. The sequenced portions of the 3' untranslated regions of the cow and dog clones were 88% identical. Na+/Ca2+ exchange activity was expressed in Xenopus laevis oocytes injected with cRNA from clone p17, and in COS cells transfected with expression vectors containing p17. Immunoprecipitation of 35S-labeled proteins from transfected cells with an antibody against the N-terminal portion of the bovine exchanger showed the presence of a 120-kDa protein corresponding to the intact cardiac exchanger. The second bovine clone (p13) did not express exchange activity in either of the above expression systems, presumably because it contained a 300-bp insert with multiple stop codons which interrupted the coding sequence. Comparison of the 5' untranslated regions of p13 and p17 revealed a 156-bp segment in p17 that was apparently spliced out of p13. This segment contained a short open reading frame. A chimera encoding the 5' untranslated region of p13 and the coding sequence of p17 exhibited only a modest (74%) increase in expressed exchange activity in transfected cells compared to p17, suggesting that the presence of the upstream open reading frame in p17 did not greatly reduce translation efficiency. The results suggest that alternate splicing mechanisms may be involved in processing mRNA for the bovine cardiac exchanger.  相似文献   

17.
The site density of the Na2+-Ca2+ exchanger in bovine cardiac sarcolemma was estimated from measurements of the fraction of reconstituted proteoliposomes exhibiting exchange activity. Sarcolemmal vesicles were solubilized with 1% Triton X-100 in the presence of either 100 mM NaCl or 100 mM KCl; after a 20-40-min incubation period on ice, sufficient KCl, NaCl, CaCl2, and soybean phospholipids were added to each extract to give final concentrations of 40 mM NaCl, 120 mM KCl, 0.1 mM CaCl2, and 10 mg/ml phospholipid. These mixtures were then reconstituted into proteoliposomes, and the rate of 45Ca2+ isotopic exchange was measured under equilibrium conditions. Control studies showed that Na+-Ca2+ exchange activity was completely lost if Na+ was not present during solubilization. The difference in 45Ca2+ uptake between vesicles initially solubilized in the presence or absence of NaCl therefore reflected exchange activity and corresponded to 3.1 +/- 0.3% of the total 45Ca2+ uptake by the entire population of vesicles, as measured in the presence of the Ca2+ ionophore A23187. Assuming that each vesicle with exchange activity contained 1 molecule of the Na+-Ca2+ exchange carrier, a site density of 10-20 pmol/mg of protein for the exchanger was calculated. The Vmax for Na+-Ca2+ exchange activity in the proteoliposomes was approximately 20 nmol/mg of protein.s which indicates that the turnover number of the exchange carrier is 1000 s-1 or more. Thus, the Na+-Ca2+ exchanger is a low density, high turnover transport system.  相似文献   

18.
Na(+)/Ca(2+) exchange activity in Chinese hamster ovary cells expressing the bovine cardiac Na(+)/Ca(2+) exchanger was inhibited by the short chain ceramide analogs N-acetylsphingosine and N-hexanoylsphingosine (5-15 micrometer). The sphingolipids reduced exchange-mediated Ba(2+) influx by 50-70% and also inhibited the Ca(2+) efflux mode of exchange activity. The biologically inactive ceramide analog N-acetylsphinganine had only modest effects on exchange activity. Cells expressing the Delta(241-680) and Delta(680-685) deletion mutants of the Na(+)/Ca(2+) exchanger were not inhibited by ceramide; these mutants show defects in both Na(+)-dependent and Ca(2+)-dependent regulatory behavior. Another mutant, which was defective only in Na(+)-dependent regulation, was as sensitive to ceramide inhibition as the wild-type exchanger. Inhibition of exchange activity by ceramide was time-dependent and was accelerated by depletion of internal Ca(2+) stores. Sphingosine (2.5 micrometer) also inhibited the Ca(2+) influx and efflux modes of exchange activity in cells expressing the wild-type exchanger; sphingosine did not affect Ba(2+) influx in the Delta(241-680) mutant. The effects of the exogenous sphingolipids were reproduced by blocking cellular ceramide utilization pathways, suggesting that exchange activity is inhibited by increased levels of endogenous ceramide and/or sphingosine. We propose that sphingolipids impair Ca(2+)-dependent activation of the exchanger and that in cardiac myocytes, this process serves as a feedback mechanism that links exchange activity to the diastolic concentration of cytosolic Ca(2+).  相似文献   

19.
20.
The Na(+)-Ca(2+) exchanger (NCX) links transmembrane movements of Ca(2+) ions to the reciprocal movement of Na(+) ions. It normally functions primarily as a Ca(2+) efflux mechanism in excitable tissues such as the heart, but it can also mediate Ca(2+) influx under certain conditions. Na(+) and Ca(2+) ions exert complex regulatory effects on NCX activity. Ca(2+) binds to two regulatory sites in the exchanger's central hydrophilic domain, and this interaction is normally essential for activation of exchange activity. High cytosolic Na(+) concentrations, however, can induce a constitutive activity that by-passes the need for allosteric Ca(2+) activation. Constitutive NCX activity can also be induced by high levels of phopshotidylinositol-4,5-bisphosphate (PIP?) and by mutations affecting the regulatory calcium binding domains. In addition to promoting constitutive activity, high cytosolic Na(+) concentrations also induce an inactivated state of the exchanger (Na(+)-dependent inactivation) that becomes dominant when cytosolic pH and PIP? levels fall. Na(+)-dependent inactivation may provide a means of protecting cells from Ca(2+) overload due to NCX-mediated Ca(2+) influx during ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号