首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Potential carcinogenicity of some transition metal ions was tested using a direct-current polarography method. The measurements were based on the reduction of tested compounds in an anhydrous solution using α-lipoic acid as the detection compound. The potential carcinogenicity was expressed in terms of the parameter tg α, which is known to directly correlate with the carcinogenicity of tested compounds. For the metal ions tested, tg α was found to decrease in the following sequence: Fe(III) > Pb(II) > V(IV) > Fe(II) > Mn(II) > Cu(II). Zero values of tg α were found for Cd(II) and Mn(III).  相似文献   

3.
The following formation constants have been determine for nalidixic acid: proton, copper(II) complexation, magnesium(II) complexation, guanosine-5′-monophosphate-copper(II) complexation. Use of these data (together with the corresponding published constants of calcium(II), iron(II), manganese(II) and zinc(II) supports the hypothesis that the drug acts at a site other than extracellular. Complex formation between nalidixic acid, metal ion and DNA (at guanosine residues) is suggested.  相似文献   

4.
5.
6.
Transhydrogenase couples proton translocation across a bacterial or mitochondrial membrane to the redox reaction between NAD(H) and NADP(H). Purified intact transhydrogenase from Escherichia coli was prepared, and its His tag removed. The forward and reverse transhydrogenation reactions catalysed by the enzyme were inhibited by certain metal ions but a “cyclic reaction” was stimulated. Of metal ions tested they were effective in the order Pb2+ > Cu2+ > Zn2+ = Cd2+ > Ni2+ > Co2+. The results suggest that the metal ions affect transhydrogenase by binding to a site in the proton-transfer pathway. Attenuated total-reflectance Fourier-transform infrared difference spectroscopy indicated the involvement of His and Asp/Glu residues in the Zn2+-binding site(s). A mutant in which βHis91 in the membrane-spanning domain of transhydrogenase was replaced by Lys had enzyme activities resembling those of wild-type enzyme treated with Zn2+. Effects of the metal ion on the mutant were much diminished but still evident. Signals in Zn2+-induced FTIR difference spectra of the βHis91Lys mutant were also attributable to changes in His and Asp/Glu residues but were much smaller than those in wild-type spectra. The results support the view that βHis91 and nearby Asp or Glu residues participate in the proton-transfer pathway of transhydrogenase.  相似文献   

7.
A general procedure for site-specific and reversible labeling of proteins with transition metal ions is described. The method is based on the use of the novel ligand 1-(2-thioethyl)-1,4,7,10-tetraazacyclododecane (TETAC), which specifically and readily reacts with thiol groups. Synthesis of TETAC from 1,4,7,10-tetraazacyclododecane (cyclen) and ethylene disulfide yielded a mixture of products, including TETAC and its oxidized disulfide in 56.4% yield. The procedure for labeling proteins with TETAC is straightforward and led to separation of the TETAC-containing product mixture through gel-filtration chromatography. The resulting protein-TETAC adducts were shown to contain a single TETAC group which bound transition metal ions. Protein-TETACCu2+ had a UV-Vis spectrum similar to that of Cu2+(cyclen) while the protein-TETACCo2+ complex had a different spectrum to that of the cobalt-containing cyclen. This is because attachment to the protein prevented the Co2+-containing TETAC from dimerising and binding O2, which the cobalt-containing cyclen is able to do. The proteins used to develop this labeling procedure were the DNase domain of colicin E9 and its inhibitor protein Im9. Unlike Im9, the DNase does not contain a cysteine residue but the Ser30Cys variant of the DNase was prepared by site-directed mutagenesis. Both Im9 and the Ser30Cys DNase were modified with TETAC and the modifications shown to be structurally and functionally benign through NMR spectroscopy of the modified Im9 and fluorescence spectroscopy binding assays in which DNase-Im9 complexes were formed. The simplicity of the method, and its general application to any protein through the introduction of cysteine by site-directed mutagenesis, suggests it will be of wide use in protein chemistry applications.  相似文献   

8.
The single crystals of coordinated complexes of neutral erythritol (C4H10O4) with various transition metal ions were synthesized and studied using FT-IR and single crystal X-ray diffraction analysis. Two CuCl2-erythritol complexes (denoted as CuE(I) and CuE(II)) were obtained. In CuE(I), Cu2+ coordinates with two chloride ions and four OH groups from two erythritol molecules. Two copper centers are linked by one erythritol molecule to form a zigzag chain. For CuE(II), each Cu2+ coordinates with two OH groups from an erythritol molecule and two chloride ions. The crystal of CuE(II) contains complexed and free erythritol, the dimers of [Cu2Cl4(C4H10O4)] further form a [Cu2Cl4(C4H10O4)]infinity chain via secondary Cu...Cl bonds, both the dimer unit of [Cu2Cl4.(C4H10O4)] and non-coordinated C4H10O4 unit exist side by side in the crystal. MnCl2-erythritol complex whose structure is similar to CuE(I) is also acquired. The OH groups of erythritol act as ligand to coordinate to metal ions on one hand, one the other hand, OH groups form hydrogen bonds network that link chain and layer together to build three-dimensional structures.  相似文献   

9.
There were significant levels of in vitro hydrogenase activity in Methanosarcina strains. The multiple forms of hydrogenase were observed in cell free extracts of cells grown on methanol. Strains having poor growth on H2 : CO2 had four forms while strains having normal growth on all substrates contained two forms of hydrogenase. These multiple forms differ in their charges as well as in their composition of transition metal ions. The strain having normal growth showed higher incorporation of 63Ni2+ and 65Zn2+. Both hydrogenases, A and D, of strain P3 had methylviologen and F420-reducing activity and contained Zn2+ and Co2+ respectively. Hydrogenases A and D of strains P1 and P4 also had similar characteristics whereas hydrogenases B and C had only methylviologen reducing activity.  相似文献   

10.
W Kadima 《Biochemistry》1999,38(41):13443-13452
The role of metal ions in the T- to R-allosteric transition is ascertained from the investigation of the T- to R-allosteric transition of transition metal ions substituted-insulin hexamers, as well as from the kinetics of their dissociation. These studies establish that ligand field stabilization energy (LFSE), coordination geometry preference, and the Lewis acidity of the metal ion in the zinc sites modulate the T- to R-state transition. (1)H NMR, (113)Cd NMR, and UV-vis measurements demonstrate that, under suitable conditions, Fe2+/3+, Ni2+, and Cd2+ bind insulin to form stable hexamers, which are allosteric species. (1)H NMR R-state signatures are elicited by addition of phenol alone in the case of Ni(II)- and Cd(II)-substituted insulin hexamers. The Fe(II)-substituted insulin hexamer is converted to the ferric analogue upon addition of phenol. For the Fe(III)-substituted insulin hexamer, appearance of (1)H NMR R-state signatures requires, additionally to phenol, ligands containing a nitrogen that can donate a lone pair of electrons. This is consistent with stabilization of the R-state by heterotropic interactions between the phenol-binding pocket and ligand binding to Fe(III) in the zinc site. UV-vis measurements indicate that the (1)H NMR detected changes in the conformation of the Fe(III)-insulin hexamer are accompanied by a change in the electronic structure of the iron site. Kinetic measurements of the dissociation of the hexamers provide evidence for the modulation of the stability of the hexamer by ligand field stabilization effects. These kinetic studies also demonstrate that the T- to R-state transition in the insulin hexamer is governed by coordination geometry preference of the metal ion in the zinc site and the compatibility between Lewis acidity of the metal ion in the zinc site and the Lewis basicity of the exogenous ligands. Evidence for the alteration of the calcium site has been obtained from (113)Cd NMR measurements. This finding adds to the number of known conformational changes that occur during the T- to R-transition and is an important consideration in the formulation of allosteric mechanisms of the insulin hexamer.  相似文献   

11.
12.
Several complexes of Mn2+, Fe2+, Zn2+, Pd2+, Cd2+, Pb2+, Ce2+, Pr3+, Sm3+, Tb3+, and Uo22+ metal ions with adenosine 5'-monophosphate have been isolated. The stoichiometry of all the complexes prepared were 1:1 metal to mononucleotide, respectively, and they were characterized by elemental analysis, infrared, electronic and fluorescence spectroscopy, conductivity, and magnetic measurements. Similarities among the spectra of the substances with structurally known metal-mononucleotide complexes suggest that the metal ions interact directly or indirectly with the N7 of the purine ring and the phosphate group of the mononucleotide.  相似文献   

13.
Kitada  Yasuyuki 《Chemical senses》1994,19(6):627-640
In single water-sensitive fibers (water fibers) of the frogglossopharyngeal nerve, application of a solution of 500 mMcholine Cl to the tongue elicited responses of varying magnitude.Some water fibers (plain choline-insensitive water fibers) barelyresponded to the solution, while some water fibers (plain choline-sensitivewater fibers) exhibited a considerable response to this solution.NiCl2. which is barely effective in producing neural responseat concentrations below 5 mM, induced the response of plaincholine-insensitrve water fibers to choline+ ions. It was confirmed,in a collision test, that the Ni2+-induced responses to choline+ions were derived from water fibers. However, NiCl2 did notaffect the magnitude of me response generated by choline+ ionsin plain choline-sensitive water fibers. The concentration-responsecurve for choline Cl in the presence of 1 mM NiCl2 for plaincholine-insensitive water fibers was similar to the curves obtainedin the absence of NiCl2 for plain choline-sensitive water fibers.Other organic salts, such as tris(hydroxymethyl)arrdnomethane-HCl,triethanotamine-HCl and tetraethylammonium Cl, elicited no responseor only a very small response from water fibers, and NiCl2 didnot affect these responses. It is suggested that there existsa choline receptor for the response to choline+ ions in theapical membrane of frog taste cells and that Ni2+ ions exposethe sites of such choline receptors, which are deeply embeddedin the receptor membrane, to the outside medium. The effectof Ni2+ ions results in an increase in the number of the cholinereceptor sites available for binding of choline+ ions. The rankorder of effectiveness of transition metal ions in elicitingthe appearance or enhancement of the response to choline Clwas Ni2+ > Co2+ > Mn2+. Mg2+ ions had no effect on theresponse to choline+ ions. A similar rank order was previouslyobtained in enhancement of the responses to Ca2+, Mg2+ and Na2+ions (Kitada, 1994a). It seems likely that the mechanism forenhancement or elicitation of the response to choline+ ionsby the transition metal ions has features in common with thatfor enhancement of the responses to Ca2+, Mg2+ and Na+ ions.  相似文献   

14.
Binding of transition metal ions by ceruloplasmin (ferroxidase)   总被引:2,自引:0,他引:2  
D J McKee  E Frieden 《Biochemistry》1971,10(21):3880-3883
  相似文献   

15.
A functional role of metal ions in a class II aldolase   总被引:3,自引:0,他引:3  
  相似文献   

16.
17.
A stress analysis of the primate mandible suggests that vertically deep jaws in the molar region are usually an adaptation to counter increased sagittal bending stress about the balancing-side mandibular corpus during unilateral mastication. This increased bending stress about the balancing side is caused by an increase in the amount of balancing-side muscle force. Furthermore, this increased muscle force will also cause an increase in dorso-ventral shear stress along the mandibular symphysis. Since increased symphyseal stress can be countered by symphyseal fusion and as increased bending stress can be countered by a deeper jaw, deep jaws and symphyseal fusion are often part of the same functional pattern. In some primates (e.g., Cercocebus albigena), deep jaws are an adaptation to counter bending in the sagittal plane during powerful incisor biting, rather than during unilateral mastication. The stress analysis of the primate mandible also suggests that jaws which are transversely thick in the molar region are an adaptation to counter increased torsion about the long axis of the working-side mandibular corpus during unilateral mastication. Increased torsion of the mandibular corpus can be caused by an increase in masticatory muscle force, an increase in the transverse component of the postcanine bite force and/or an increase in premolar use during mastication. Patterns of masticatory muscle force were estimated for galagos and macaques, demonstrating that the ratio of working-side muscle force to balancing-side muscle force is approximately 1.5:1 in macaques and 3.5:1 in galagos during unilateral isometric molar biting. These data support the hypothesis that mandibular symphyseal fusion is an adaptative response to maximize unilateral molar bite force by utilizing a greater percentage of balancing-side muscle force.  相似文献   

18.
The fungitoxicity of metal ions   总被引:3,自引:0,他引:3  
  相似文献   

19.
20.
We are describing efficient dynamics simulation methods for the characterization of functional motion of biomolecules on the nanometer scale. Multivariate statistical methods are widely used to extract and enhance functional collective motions from molecular dynamics (MD) simulations. A dimension reduction in MD is often realized through a principal component analysis (PCA) or a singular value decomposition (SVD) of the trajectory. Normal mode analysis (NMA) is a related collective coordinate space approach, which involves the decomposition of the motion into vibration modes based on an elastic model. Using the myosin motor protein as an example we describe a hybrid technique termed amplified collective motions (ACM) that enhances sampling of conformational space through a combination of normal modes with atomic level MD. Unfortunately, the forced orthogonalization of modes in collective coordinate space leads to complex dependencies that are not necessarily consistent with the symmetry of biological macromolecules and assemblies. In many biological molecules, such as HIV-1 protease, reflective or rotational symmetries are present that are broken using standard orthogonal basis functions. We present a method to compute the plane of reflective symmetry or the axis of rotational symmetry from the trajectory frames. Moreover, we develop an SVD that best approximates the given trajectory while respecting the symmetry. Finally, we describe a local feature analysis (LFA) to construct a topographic representation of functional dynamics in terms of local features. The LFA representations are low-dimensional, and provide a reduced basis set for collective motions, but unlike global collective modes they are sparsely distributed and spatially localized. This yields a more reliable assignment of essential dynamics modes across different MD time windows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号