首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Dose-response relationships in pulmonary vascular resistance (PVR), mean systemic arterial pressure (SAP), and heart rate (HR) to left atrial administration of prostaglandin D2 (PGD2) were determined in five fetal lambs. Fetuses were delivered by cesarean section from chloralose anesthetized ewes with the umbilical circulation maintained intact. Fetuses were prevented from breathing thus maintaining pulmonary vascular tone in the elevated fetal state. Blood was withdrawn from the inferior vena cava and pumped at constant flow into the lower left lobe of the fetal lung. Postpulmonary infusions of PGD2 brought about dose-dependent decreases in pulmonary vascular resistance. Heart rate tended to increase in fetal lambs. Mean systemic arterial pressure increased in the fetal lambs at all doses tested except for the largest dose (44.14 micrograms/kg X min), which produced slight hypotension. These data demonstrate that exposure to the systemic circulation prior to entering the pulmonary vasculature does not alter the preferential dilator action of PGD2 on fetal pulmonary vessels nor does it produce significant systemic hypotension.  相似文献   

2.
The effects of leukotriene C4 (LTC4) and leukotriene D4 (LTD4) in the feline mesenteric vascular bed were investigated under conditions of controlled blood flow so that changes in perfusion pressure directly reflect changes in vascular resistance. Intra-arterial injections of LTC4 and LTD4 (0.3-3.0 micrograms) increased perfusion pressure in a dose-related fashion. Vasoconstrictor responses to LTC 4 and LTD4 were similar to norepinephrine (NE) whereas mesenteric vasoconstrictor response to the thromboxane analog, U46619, was markedly greater than were responses to LTC4 and LTD4. Meclofenamate in a dose that greatly attenuated the systemic depressor response to arachidonic acid was without effect on vasoconstrictor responses to LTC4 and LTD4, NE and U46619 in the mesenteric vascular bed. The present data show that LTC4 and LTD4 possess significant vasoconstrictor activity in the feline mesenteric vascular bed. In addition, the present data suggest that products of the cyclooxygenase pathway do not mediate vasoconstrictor responses to LTC4 and LTD4 in the intestinal circulation of the cat.  相似文献   

3.
Leukotrienes C4 and D4 have been implicated as possible mediators of hypoxic pulmonary vasoconstriction. To test this hypothesis, the relationship between pulmonary leukotriene (LT) synthesis in response to hypoxia and alterations in pulmonary hemodynamics was evaluated in pentobarbital sodium-anesthetized, neuromuscular-blocked, male, mongrel dogs. A reduction in the fraction of inspired O2 (FIO2) in vehicle-treated animals (n = 12) from 0.21 to 0.10 was associated with increases in LTC4 and LTD4 in bronchoalveolar lavage fluid (BALF). After 30 min of continuous hypoxia, LTC4 and LTD4 increased from control values of 59.4 +/- 10.4 and 91.7 +/- 18.1 ng/lavage to 142.7 +/- 31.8 (P less than 0.05) and 156.3 +/- 25.3 (P less than 0.01) ng/lavage, respectively. Concomitantly, mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) were increased over control by 67 +/- 7 (P less than 0.001) and 62 +/- 7% (P less than 0.001), respectively. In contrast, in animals treated with diethylcarbamazine (n = 5), a leukotriene A4 synthase inhibitor, identical reductions in FIO2 were not associated with increases in LTC4 and LTD4 in BALF, although at the same time period, Ppa and PVR were increased over control by 60 +/- 13 (P less than 0.05) and 112 +/- 31% (P less than 0.05), respectively. These results, therefore, do not support the contention that leukotrienes mediate hypoxic pulmonary vasoconstriction in dogs.  相似文献   

4.
We examined the pulmonary vascular response to an intravenous leukotriene D4 (LTD4) injection of (1 microgram X kg-1 X min-1 for 2 min) immediately followed by infusion of 0.133 microgram X kg-1 X min-1 for 15 min in awake sheep prepared with lung lymph fistulas. LTD4 resulted in rapid generation of thromboxane A2 as measured by an increase in plasma thromboxane B2 concentration. The thromboxane B2 generation was associated with increases in pulmonary arterial and pulmonary arterial wedge pressures while left atrial pressure did not change significantly. Pulmonary lymph flow (Qlym) increased (P less than 0.05) transiently from base line 6.87 +/- 1.88 (SE) ml/h to maximum value of 9.77 +/- 1.27 at 15 min following the LTD4 infusion. The maximum increase in Qlym was associated with an increase in the estimated pulmonary capillary pressure. The increase in Qlym was not associated with a change in the lymph-to-plasma protein concentration (L/P) ratio. Thromboxane synthetase inhibition with dazoxiben (an imidazole derivative) prevented thromboxane B2 generation after LTD4 and also prevented the increases in pulmonary vascular pressures and Qlym. We conclude that LTD4 in awake sheep increases resistance of large pulmonary veins. The small transient increase in Qlym can be explained by the increase in pulmonary capillary pressure. Thromboxane appears to mediate both the pulmonary hemodynamic and lymph responses to LTD4 in sheep.  相似文献   

5.
We investigated the mechanism of ethanol-induced pulmonary vasoconstriction in lambs, by a pharmacological approach. We chronically instrumented 28 lambs to determine whether phentolamine (alpha-block), propranolol (beta-block), promethazine and cimetidine (H1- and H2-block), high-dose indomethacin, or low- and high-dose meclofenamate (cyclooxygenase block) altered the vasoconstriction. Ethanol alone increased pulmonary vascular resistance from 0.14 to 0.49 Torr.ml-1.kg-1.min (U). Only indomethacin (7-8 mg/kg po) and high-dose meclofenamate (7-8 mg/kg iv) abolished the pulmonary vascular response to ethanol infusion. Pulmonary vascular resistance was 0.14 U after ethanol plus indomethacin and was 0.2 U after ethanol plus high-dose meclofenamate (P = NS vs. base line). Low-dose meclofenamate (2 mg/kg) attenuated the vasoconstrictor response. Systemic vascular resistance increased moderately after ethanol and had a similar pattern of inhibition by cyclooxygenase blockade. Cardiac output and heart rate decreased nearly significantly after ethanol (P less than 0.06), a tendency that was also ablated by cyclooxygenase inhibition. Thus the acute cardiocirculatory response to ethanol involves an intact prostaglandin synthase system in lambs. To our knowledge, these data are the first documentation that cyclooxygenase enzyme blockade can eliminate the acute cardiac and vascular effects of ethanol in a whole-animal system.  相似文献   

6.
BACKGROUND: Although prostaglandin D2 (PGD2), a mast cell-derived inflammatory mediator, may trigger allergic airway inflammation, its potency and the mechanism by which it induces airway microvascular leakage, a component of airway inflammation, is not clear. OBJECTIVE: We wanted to evaluate the relative potency of PGD2 to cause microvascular leakage as compared to airflow obstruction, because both responses were shown to occur simultaneously in allergic airway diseases such as asthma. The role of thromboxane A2 receptors (TP receptors) in inducing these airway responses was also examined. METHODS: Anesthetized and mechanically ventilated guinea pigs were given i.v. Evans blue dye (EB dye) and, 1 min later, PGD2 (30, 100, 300 or 1,000 nmol/kg). For comparison, the effect of 150 nmol/kg histamine or 2 nmol/kg leukotriene D4 (LTD4) was also examined. Lung resistance (R(L)) was measured for 6 min (or 25 min for selected animals) and the lungs were removed to calculate the amount of extravasated EB dye into the airways as a marker of leakage. In some of the animals, specific TP receptor antagonists, S-1452 (10 microg/kg) or ONO-3708 (10 mg/kg), or a thromboxane A2 synthase inhibitor, OKY-046 (30 mg/kg), was pretreated before giving PGD2. RESULTS: Injection of PGD2 produced an immediate and dose-dependent increase in RL (peaking within 1 min), which was significant at all doses studied. At 1,000 nmol/kg, PGD2 induced a later increase in R(L), starting at 3 min and reaching a second peak at 8 min. By contrast, only PGD2 at doses of 300 and 1,000 nmol/kg produced a significant increase in EB dye extravasation. The relative potency of 1,000 nmol/kg PGD2 to induce leakage as compared to airflow obstruction was comparable to histamine at most of airway levels, but less than LTD4. Both responses caused by PGD2 were completely abolished by S-1452 and ONO-3708, but not by OKY-046. CONCLUSION: PGD2 may induce airway microvascular leakage by directly stimulating TP receptors without generating TXA2 in guinea pigs. Microvascular leakage may play a role in the development of allergic airway inflammation caused by PGD2.  相似文献   

7.
We determined the effect of aerosol challenge with leukotriene D4 (LTD4) on specific lung resistance (sRL) and tracheal mucous velocity (TMV) in conscious sheep with (allergic) and without (nonallergic) Ascaris suum hypersensitivity. In allergic sheep LTD4 in concentrations of 50, 100, and 150 micrograms/ml produced dose-dependent increases in mean sRL by 44 (P = NS), 154 (P less than 0.05), and 233% (P less than 0.05), respectively. The increase in sRL produced by 150 micrograms/ml LTD4 was prevented by FPL 55712, an antagonist of slow-reacting substance of anaphylaxis. In nonallergic sheep 150 micrograms/ml LTD4 failed to elicit a significant change in sRL. In contrast to the changes in airway mechanics, concentrations of LTD4 as low as 25 micrograms/ml produced significant decreases in TMV in allergic sheep. The maximum decrease in TMV at this dose occurred 2 h after challenge; with larger doses of LTD4 (100 and 150 micrograms/ml) the maximum effect was observed 3 h after challenge. Furthermore, 150 micrograms/ml LTD4 reduced TMV in nonallergic sheep (mean decrease 43%, P less than 0.05). FPL 55712 only had a minor effect on the LTD4-induced decreases in TMV. We conclude that allergic sheep exhibit greater airway responsiveness to inhaled LTD4 than nonallergic sheep but that this difference is not evident for the concomitant changes in mucociliary transport. This suggests that the allergic state is associated with an increased responsiveness to LTD4 in tissues controlling airway caliber but not in those contributing to mucociliary function.  相似文献   

8.
Bradykinin produces pulmonary vasodilation and also stimulates production of other pulmonary vasodilators, including prostaglandin I2 (PGI2) and endothelial-derived relaxing factor. In 12 chronically instrumented fetal lambs, we therefore investigated potential mediation of the bradykinin response by PGI2 or other cyclooxygenase products. A 15-min infusion of bradykinin (approximately 1 microgram/kg estimated fetal wt/min) increased fetal pulmonary blood flow by 522% (P less than 0.05) and decreased pulmonary vascular resistance by 86% (P less than 0.05); plasma 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) concentration also increased (P less than 0.05). After cyclooxygenase inhibition by indomethacin (3 mg), bradykinin increased pulmonary blood flow by only 350% (P less than 0.05) and decreased pulmonary vascular resistance by 83% (P less than 0.05); plasma 6-keto-PGF1 alpha concentrations did not increase. The increase in pulmonary blood flow produced by bradykinin was greater before administration of indomethacin than after (P less than 0.05). These studies demonstrate that bradykinin produces fetal pulmonary vasodilation by at least two mechanisms, one dependent on and the other independent of PGI2 production, the latter mechanism predominating.  相似文献   

9.
Anatomic evidence suggests that leu5-enkephalin (Leu5-enk) may be involved in the physiologic control of pulmonary vascular tone. Information regarding its pulmonary vascular effect is limited; we therefore studied its effect on the immature pulmonary circulation. Normoxic and hypoxic unsedated newborn lambs with chronically implanted flow probes around the right and left pulmonary arteries were used. Leu5-enk was injected into one pulmonary artery only, so that any direct effect of the peptide on the pulmonary vessels could be determined by measuring changes in the ratio of blood flow to the injected versus the non-injected lung. Leu5-enk caused a small but significant increase in pulmonary artery pressure without increasing cardiac output or left atrial pressure (threshold = 1 microgram/kg); it is therefore a pulmonary vasoconstrictor. At a dose of 10 micrograms/kg, Leu5-enk also raised pulmonary artery pressure (20.6 mmHg to 23.9 mmHg; F(8,36) = 15.1 p less than 0.001) and calculated PAR (14.6 to 16.1 units; NS). However, the ratio of blood flow to the two lungs did not change; thus, Leu5-enk does not appear to directly act on pulmonary vessels, but rather through an intermediary to produce pulmonary vasoconstriction. This indirect pulmonary vasoconstriction was blocked by pretreatment with naloxone (3 mg/kg). We conclude that Leu5-enk is a pulmonary vasoconstrictor, albeit a weak one, in the lamb and may therefore play a role in pulmonary vascular homeostasis. This vasoconstriction does not seem to be due to a direct effect on pulmonary vessels by Leu5-enk, but may be effected through a neural or hormonal intermediary.  相似文献   

10.
We sought to determine whether pulmonary intravascular macrophages are involved in pulmonary vascular sensitivity to intravenously injected particles in sheep. We estimated that newborn lambs have few of these macrophages at birth but develop a 10-fold greater density within 2 wk. Awake, chronically instrumented newborn lambs showed no change in pulmonary vascular driving pressure (pulmonary arterial minus left atrial pressure) after injection of either liposomes [2 +/- 3 (SD) cmH2O; n = 5] or Monastral blue particles (3 +/- 2 cmH2O; n = 6) and showed no net pulmonary production of thromboxane B2, the stable metabolite of the vasoconstrictor thromboxane A2. In contrast, five of those lambs 2 wk later showed both an increase in pulmonary vascular driving pressure after injection of liposomes and Monastral blue (20 +/- 16 and 25 +/- 15 cmH2O, respectively; P < 0.05) and net pulmonary production of thromboxane B2 (171 +/- 103 and 429 +/- 419 pg/ml plasma, respectively; P < 0.05). Older lambs (n = 5) had higher pulmonary uptakes than newborn lambs (n = 6) of radioactive liposomes (47 +/- 13 vs. 12 +/- 10%; P < 0.01) and Monastral blue (53 +/- 6 vs. 21 +/- 10%; P < 0.05). We conclude that pulmonary intravascular macrophages are responsible for the sensitivity of sheep to intravenous foreign particles and are essential for a cascade of processes leading to microvascular injury.  相似文献   

11.
The effects of SQ 30741, a thromboxane A2 (TxA2) receptor blocking agent, on responses to the TxA2 mimic, U-46619, were investigated in the pulmonary vascular bed of the intact-chest cat under constant-flow conditions. The administration of SQ 30741 in doses of 1-2 mg/kg iv markedly reduced vasoconstrictor responses to U-46619 without altering responses to prostaglandin (PG) F2 alpha or PGD2 and serotonin. SQ 30741 had no significant effect on mean vascular pressures in the cat, and the dose-response curve for U-46619 was shifted to the right in a parallel manner with a similar apparent maximal response. In addition to not altering responses to PGF2 alpha, PGD2 alpha, or serotonin, SQ 30741 (2 mg/kg iv) was without significant effect on pulmonary vasoconstrictor responses to the PGD2 metabolite 9 alpha, 11 beta-PGF2, norepinephrine, angiotensin II, BAY K 8644, endothelin 1, or endothelin 2. Although responses to vasoconstrictor agents, which act through a variety of mechanisms, were not altered, responses to the PG and TxA2 precursor, arachidonic acid, were reduced significantly. The duration of the TxA2 receptor blockade was approximately 30 and 75 min at the 1- and 2-mg/kg iv doses of the antagonist, respectively. The present data show that SQ 30741 selectively blocks TxA2 receptor-mediated responses in a competitive and reversible manner in the pulmonary vascular bed. These data suggest that responses to arachidonic acid are due in large part to the formation of TxA2 and that discrete TxA2 receptors unrelated to receptors activated by PGD2 or PGF2 alpha are most likely located in resistance vessel elements in the feline pulmonary vascular bed.  相似文献   

12.
Pulmonary microcirculatory responses to leukotrienes B4, C4 and D4 in sheep   总被引:1,自引:0,他引:1  
The pulmonary microvascular responses to leukotrienes B4, C4, and D4 (total dosage of 4 micrograms/kg i.v.) were examined in acutely-prepared halothane anesthetized and awake sheep prepared with lung lymph fistulas. In anesthetized as well as unanesthetized sheep, LTB4 caused a marked and transient decrease in the circulating leukocyte count. Pulmonary transvascular protein clearance (pulmonary lymph flow X lymph-to-plasma protein concentration ratio) increased transiently in awake sheep, suggesting a small increase in pulmonary vascular permeability. The mean pulmonary artery pressure (Ppa) also increased. In the acutely-prepared sheep, the LTB4-induced pulmonary hemodynamic and lymph flow responses were damped. Leukotriene C4 increased Ppa to a greater extent in awake sheep than in anesthetized sheep, but did not significantly affect the pulmonary lymph flow rate (Qlym) and lymph-to-plasma protein concentration (L/P) ratio in either group. LTD4 increased Ppa and Qlym in both acute and awake sheep; Qlym increased without a significant change in the L/P ratio. The LTD4-induced rise in Ppa occurred in association with an increase in plasma thromboxane B2 (TxB2) concentration. The relatively small increase in Qlym with LTD4 suggests that the increase in the transvascular fluid filtration rate is the result of a rise in the pulmonary capillary hydrostatic pressure. In conclusion, LTB4 induces a marked neutropenia, pulmonary hypertension, and may transiently increase lung vascular permeability. Both LTC4 and LTD4 cause a similar degree of pulmonary hypertension in awake sheep, but had different lymph flow responses which may be due to pulmonary vasoconstriction at different sites, i.e. greater precapillary constriction with LTC4 because Qlym did not change and greater postcapillary constriction with LTD4 because Qlym increased with the same rise in Ppa.  相似文献   

13.
We recently reported that endotoxin infusion before O2 exposure significantly reduced or delayed the onset of pulmonary edema formation and respiratory failure by reducing the oxidant stress of O2 exposure. Despite these beneficial effects of endotoxin treatment, lung microvascular permeability eventually increased, but postmortem lung water content was less than expected. Prolonged O2 breathing blunts or abolishes the pulmonary constrictor response to alveolar hypoxia in some species, and it is possible that the loss of this response could contribute further to edema formation. To determine whether the reduction in lung edema observed in endotoxin-treated, O2-exposed lambs was linked to the preservation of hypoxic pulmonary vasoconstriction (HPV), we measured pulmonary vascular resistance before and after 8 min of isocarbic hypoxia (inspired O2 fraction 0.12) during each day of O2 exposure. In six control lambs, the pressor response to hypoxia was abolished after 72 h in O2, and the lambs developed respiratory failure shortly thereafter. In six endotoxin-treated lambs, HPV was preserved for as long as 144 h of O2 exposure. In two control O2-exposed lambs in whom HPV was abolished, the infusion of either angiotensin or prostaglandin H2 analogue increased pulmonary vascular resistance by greater than 75%. We conclude that in lambs 1) hyperoxia abolishes the pulmonary vascular response to hypoxia, 2) endotoxin pretreatment reduces acute O2-induced lung injury and preserves the pulmonary constrictor response to hypoxia, and 3) the loss of HPV during O2 exposure may be the result of oxidant-mediated injury to the hypoxia response itself and not the result of diffuse damage to the vasoconstrictor effector mechanism.  相似文献   

14.
The effects of theophylline (THEO), terbutaline (TER), and ipratropium bromide (IPRA), given i.v. alone or in combination, were studied on leukotriene D4 (LTD4)-induced airway obstruction in anaesthetized guinea pigs. LTD4 (0.1-1.6 microgram/kg i.v.) obstructed small airways more than large ones as assessed in terms of relative changes of lung resistance (RL) and dynamic lung compliance (CDyn). A slight tachyphylaxis to LTD4 was observed after repeated administration, especially in the responses of large bronchi. The airway effects of LTD4 were almost totally abolished by prior administration of indomethacin (5 mg/kg i.v.) suggesting a central role of secondarily released cyclo-oxygenase products in this model. THEO (1 to 20 mg/kg) and TER (10 to 400 micrograms/kg) antagonized dose-dependently the LTD4 (0.4 microgram/kg i.v.) induced rise in RL and decrease in CDyn, whereas IPRA (10 to 400 micrograms/kg) failed to show comparably activity. THEO 5 and 20 mg/kg proved highly efficient also on the dose-related airway challenge by LTD4 (0.6 and 1.5 microgram/kg i.v.). Combined treatment with THEO 5 mg/kg + Ter 80 micrograms/kg resulted in an additive effect on RL and CDyn. The combination to THEO 20 mg/kg + TER 80 micrograms/kg was about as effective as THEO 20 mg/kg alone suggesting a nearly maximal effect by the latter treatment. It is concluded that THEO is considerably more efficient on the LTD4-induced airway obstruction than previously observed on the cholinergic model in guinea pigs. Combined treatment with THEO and beta 2-adrenoceptor agonist may antagonize in an additive manner the LTD4 effects on large and small airways.  相似文献   

15.
The effects of SQ 29548, a thromboxane (Tx) A2 receptor blocking agent, on responses to the TxA2 mimic U46619 were investigated in the pulmonary vascular bed of the intact-chest cat under constant-flow conditions. The administration of SQ 29548 in doses of 0.25-1 mg/kg iv reduced vasoconstrictor responses to U-46619; however, responses to prostaglandins (PG) F2 alpha and D2 and to serotonin were also decreased. After administration of SQ 29548 in doses of 0.05-0.1 mg/kg iv, responses to U-46619 and U-44069 were reduced significantly, and the dose-response curves for these TxA2 mimics were shifted to the right in a parallel manner at a time when responses to PGF2 alpha and PGD2 were not altered. The low doses of the TxA2 receptor blocking agent significantly reduced responses to the PG and TxA2 precursor arachidonic acid but were without significant effect on vasoconstrictor responses to serotonin; histamine; norepinephrine; angiotensin II; the major PGD2 metabolite 9 alpha,11 beta-PGF2; BAY K 8644, an agent that enhances calcium entry; and endothelin-1. The present data show that at low doses SQ 29548 selectively blocks TxA2 receptor-mediated responses in a competitive and reversible manner in the pulmonary vascular bed. These data suggest that responses to arachidonic acid are mediated in large part by the formation of TxA2 and provide evidence in support of the hypothesis that a discrete TxA2 receptor unrelated to PGF2 alpha or PGD2 receptors is present in undefined resistance vessel elements in the feline pulmonary vascular bed.  相似文献   

16.
In this study we examined the effects of a new orally active leukotriene (LT) D4 receptor antagonist, WY-48,252 (1,1,1-trifluoro-N-[3-(2-quinolinylmethoxy)phenyl]methanesulfonamide), on LTD4-induced bronchoconstriction and antigen-induced early and late responses in allergic sheep. For all studies WY-48,252 10 mg/kg, was administered via intragastric tube 1 h prior to airway challenge. In seven sheep, airway challenge with LTD4 [delivered dose mean +/- SE, 53 +/- 2 micrograms] resulted in an immediate increase in SRL to 600 +/- 18% over baseline. When these same sheep were treated with WY-48,252, airway challenge with LTD4 (delivered dose, 61 +/- 5 micrograms) resulted in only a 220 +/- 50% increase in SRL (p less than 0.05 vs placebo). The drug had no effect on baseline SRL. WY-48,252 was also effective in reducing early responses and blocking late responses to inhaled antigen in allergic sheep (n = 7). In the control trial, airway challenge with Ascaris suum antigen resulted in immediate and late (i.e. 6-8 h) increases in SRL of 499% and 138% over baseline (both responses, p less than 0.05). When these same sheep were pretreated with WY-48,252 the immediate antigen-induced increase in SRL was 171% and the late response was 49% over baseline (both responses p less than 0.05 vs control). These results indicate that WY-48,252 is a LTD4 antagonist in allergic sheep. The ability of this compound to modify antigen-induced early responses and to block antigen-induced late responses suggests that the generation of LTD4 during airway anaphylaxis contributes to both responses.  相似文献   

17.
Aerosol administration of solutions of 900 micrograms/ml of leukotriene C4 (LT) or D4 to cynomolgus monkeys produced dose-dependent, equipotent increases in pulmonary resistance (Rp) and decreases in dynamic lung compliance (Cdyn). Time to peak response was, in part, related to dose and ranged from 4 to 20 min. Both LTC4 and LTD4 were less potent than histamine. Aerosol pretreatment with the cyclooxygenase inhibitor indomethacin had no significant effect on either LTC4 or LTD4 dose-response curves; however, at the highest doses of these agonists a notable, nonsignificant inhibition of effects on both Rp and Cdyn was seen. Intravenous dl-propranolol had no effect on responses to LTD4. Aerosol pretreatment with FPL 55712 significantly (P less than 0.05) inhibited airway responses to both LTC4 and D4. In contrast, an intravenous infusion of FPL 55712 failed to block the bronchospastic activity of LTD4. In conclusion, cynomolgus monkeys are responsive to aerosol administration of LTC4 and LTD4, and the pharmacology of their responses appears to resemble that of man.  相似文献   

18.
The objective of this study was to determine the direct actions of atrial natriuretic factor (ANF) on the pulmonary vascular bed and to compare these actions with those of sodium nitroprusside (SNP). The responses to incremental infusion rates of 1, 5, 10, and 50 ng.kg-1.min-1 synthetic human ANF and to 1-2 micrograms.kg-1.min-1 SNP were examined in the in situ autoperfused lung lobe of open-chest anesthetized pigs under conditions of normal and elevated pulmonary vascular tone. During basal conditions, ANF and SNP caused small but significant reductions in pulmonary artery pressure (Ppa) and pulmonary venous pressure (Ppv) with no change in lobar vascular resistance (LVR). When pulmonary vascular tone was increased by prostaglandin F2 alpha (20 micrograms/min), ANF infusion at doses greater than 1 ng.kg-1.min-1 decreased Ppa and LVR in a dose-related fashion. Infusion of 50 ng.kg-1.min-1 ANF and of 2 micrograms.kg-1.min-1 SNP maximally decreased Ppa, from 33 +/- 3 to 20 +/- 2 mmHg (P less than 0.001) and from 31 +/- 4 to 18 +/- 1 mmHg (P less than 0.001), respectively. At these doses, ANF reduced systemic arterial pressure by only 11.5 +/- 3% compared with 34 +/- 4% decreased with SNP (P less than 0.001). The results indicate that ANF, similarly to SNP, exerts a direct potent vasodilator activity in the porcine pulmonary vascular bed, which is dependent on the existing level of vasoconstrictor tone.  相似文献   

19.
At birth, pulmonary vasodilation occurs during rhythmic distension of the lungs and oxygenation. Inhibition of prostaglandin synthesis prevents pulmonary vasodilation during rhythmic distension of the lungs but not during oxygenation. Because endothelium-derived relaxing factor (EDRF) modulates pulmonary vascular tone at birth, at rest, and during hypoxia in older animals, we hypothesized that EDRF may modulate pulmonary vascular tone during oxygenation in fetal lambs. We studied the responses to N omega-nitro-L-arginine, a competitive inhibitor of EDRF synthesis, in nine near-term fetal lambs and to drug vehicle in six of these lambs and the subsequent responses to in utero ventilation with 95% O2 in these fetal lambs. In all fetal lambs, prostaglandin synthesis was prevented by meclofenamate. N omega-nitro-L-arginine increased pulmonary and systemic arterial pressures by 28% (P < 0.05) and 31% (P < 0.05), respectively, and decreased pulmonary blood flow by 83% (P < 0.05). In the controls, ventilation with 95% O2 increased pulmonary blood flow by 1,050% (P = 0.05) without changing pressures, thereby decreasing pulmonary vascular resistance by 88% (P = 0.05). During N omega-nitro-L-arginine infusion, ventilation with 95% O2 increased pulmonary blood flow by 162% (P = 0.05) and decreased pulmonary vascular resistance by 74% (P = 0.05). This suggests that EDRF may play an important role in modulating resting pulmonary vascular tone in fetal lambs and in the vasodilatory response to ventilation with O2 in utero.  相似文献   

20.
The renal effects of dopexamine, a new dopaminergic agonist with marked beta 2-adrenergic agonist properties, but no alpha-adrenergic effect, has been studied in 8 newborn New Zealand rabbits, whose renal functional characteristics show close similarities with those of premature infants. Six animals were used as controls. After a control period, dopexamine was infused intravenously at a rate of 4 micrograms/kg per min and after a wash-out period, at 10 micrograms/kg per min. The renal effects of dopamine were studied in similar conditions. Glomerular filtration rate (GFR) and renal plasma flow (RPF) were determined by inulin and para-aminohippuric acid clearances, respectively. Dopexamine, 4 micrograms/kg per min, did not induce changes in cardiovascular and renal hemodynamics or in renal functions. At 10 micrograms/kg per min, a significant increase in urine flow rate (25 +/- 5%; p less than 0.01), urine sodium excretion (77 +/- 17%; p less than 0.01) and fractional sodium excretion (69 +/- 25%; p less than 0.05) was observed. The GFR, RPF and renal vascular resistance (RVR) were not affected. Heart rate increased slightly but significantly (8 +/- 3%; p less than 0.05), without change in mean blood pressure (MBP). Dopamine, 4 micrograms/kg per min, decreased slightly albeit significantly MBP (3 +/- 1%; p less than 0.05). At 10 micrograms/kg per min the only renal effect was a significant increase in RVR (19 +/- 6%; p less than 0.02). The different actions of these two dopaminergic agonists in this immature model could be explained by their respective ability to activate electively the adrenergic and dopaminergic peripheral receptors. The natriuretic and diuretic effect of dopexamine in normal immature rabbits, in the absence of changes in RPF or GFR is probably mediated by a direct action of this agent on dopaminergic tubular receptors. Failure of these two drugs to increase RPF may be related to an immaturity of the dopaminergic vascular receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号