首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed an improved method of linker insertion mutagenesis for introducing 2 or 16 codons into the Bordetella pertussis cyaA gene which encodes a calmodulin-dependent adenylate cyclase. A recombinant kanamycin resistance cassette, containing oligonucleotide linkers, was cloned in plasmids which carried a truncated cyaA gene, fused at its 3' end to the 5' end of the Escherichia coli lacZ gene, specifying the alpha-peptide. This construction permitted a double selection for in-frame insertions by using screening for kanamycin resistance and for lactose-positive phenotype, resulting from alpha-complementation. We showed that most of the two-amino acid insertions within the N-terminal moiety of the catalytic domain of adenylate cyclase abolished enzymatic activity and/or altered the stability of the protein. All two-amino acid insertions within the C-terminal part of adenylate cyclase resulted in fully stable and active enzymes. These results confirm the modular structure of the catalytic domain of adenylate cyclase, previously proposed on the basis of proteolytic studies. Two-amino acid insertions between residues 247-248 and 335-336 were shown to affect the calmodulin responsiveness of adenylate cyclase, suggesting that the corresponding region in the enzyme is involved in the binding of calmodulin or in the process of calmodulin activation. In addition, we have identified within the primary structure of adenylate cyclase several permissive sites which tolerate 16-amino acid insertions without interfering with the catalytic activity or calmodulin binding. By inserting foreign antigenic determinants into these permissive sites the resulting recombinant adenylate cyclase toxin could be used to deliver specific epitopes into antigen-presenting cells.  相似文献   

2.
We have identified a new variant surface glycoprotein expression site-associated gene (ESAG) in Trypanosoma brucei, the trypanosome leucine repeat (T-LR) gene. Like most other ESAGs, it is expressed in a life cycle stage-specific manner. The N-terminal 20% of the predicted T-LR protein resembles the metal-binding domains of nucleic acid-binding proteins. The remainder is composed of leucine-rich repeats that are characteristic of protein-binding domains found in a variety of other eucaryote proteins. This is the first report of leucine-rich repeats and potential nucleic acid-binding domains on the same protein. The T-LR gene is adjacent to ESAG 4, which has homology to the catalytic domain of adenylate cyclase. This is intriguing, since yeast adenylate cyclase has a leucine-rich repeat regulatory domain. The leucine-rich repeat and putative metal-binding domains suggest a possible regulatory role that may involve adenylate cyclase activity or nucleic acid binding.  相似文献   

3.
A single gene (nac) encoding an adenylate cyclase was cloned from the genomic DNA library of Neurospora crassa, using the DNA fragment encoding the catalytic domain of adenylate cyclase of Saccharomyces cerevisiae as a probe. The open reading frame of this gene (6900 base pairs) was interrupted three time by introns. The protein encoded consists of 2300 amino acids and has adenylate cyclase activity. N. crassa adenylate cyclase has a high degree of homology with the catalytic domains of yeast and bovine brain adenylate cyclases.  相似文献   

4.
Abstract A second adenylate cyclase ( cya2 ) gene was isolated from a Rhizobium meliloti F34 gene bank. Complemented E. coli Acya mutants were capable of utilizing a number of, but not all, carbon sources known to be regulated by cAMP. DNA hybridization studies showed cya2 to be unique to R. meliloti strains. The cya2 nucleotide sequence was determined and found to encode a protein of 363 amino acids. Residues were identified within the C-terminal domain which are conserved in both eukaryotic adenylate and guanylate cyclases, including a putative ATP binding site. Similiar residues were also found in the prokaryotic R. meliloti Cya1 protein. A R. meliloti cyal/cya2 double mutant was constructed and characterized; however, cAMP production was still observed in this strain indicating the presence of a third cya gene.  相似文献   

5.
Diploid yeast cells that carry a part of the CYR1 gene deficient in a region coding for the N-terminal domain of adenylate cyclase were growth arrested and accumulated unbudded cells after inoculation into complete medium or nitrogen-free medium, but produced many cells which had one or more buds after incubation in sporulation medium. The cells incubated in sporulation medium had abnormal spindles which were free from the spindle pole bodies, larger in size, or frequently distributed in cytoplasm. The levels of cyclic AMP in these cells did not decrease to the wild-type level after transfer to the sporulation medium and remained at a constant level. The results suggest that the N-terminal domain of adenylate cyclase is associated with the regulatory function for sporulation. The environmental signals for sporulation may be transferred to the adenylate cyclase system through a factor that negatively interacts with the N-terminal domain of this enzyme.  相似文献   

6.
The Pasteurella multocida adenylate cyclase gene has been cloned and expressed in Escherichia coli. The primary structure of the protein (838 amino acids) deduced from the corresponding nucleotide sequence was compared with that of E. coli. The two enzymes have similar molecular sizes and, based on sequence conservation at the protein level, are likely to be organized in two functional domains: the amino-terminal catalytic domain and the carboxy-terminal regulatory domain. It was shown that P. multocida adenylate cyclase synthesizes increased levels of cyclic AMP in E. coli strains deficient in the catabolite gene activator protein compared with wild-type strains. This increase does not occur in strains deficient in both the catabolite gene activator protein and enzyme III-glucose, indicating that a protein similar to E. coli enzyme III-glucose is involved in the regulation of P. multocida adenylate cyclase. It also indicates that the underlying process leading to enterobacterial adenylate cyclase activation has been conserved through evolution.  相似文献   

7.
A polypeptide containing the catalytic domain of an atrial natriuretic peptide receptor guanylate cyclase has been produced using a bacterial expression system. A carboxyl fragment of the membrane form of guanylate cyclase from rat brain, which contains a region homologous to soluble guanylate and adenylate cyclases, was expressed in Escherichia coli with a double plasmid system that encodes T7 RNA polymerase (Tabor, S., and Richardson, C.C. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1074-1078). Application of this expression system permitted exclusive radiolabeling of the cloned gene product, thereby providing a means to evaluate the level of expression and stability of encoded proteins. Fusion proteins were formed with the T7 bacteriophage gene 10 product and the 293 carboxyl-terminal residues of guanylate cyclase and two deletional mutants encoding 105 and 69 residues. Extracts prepared from bacteria expressing the carboxyl region, but not those expressing further deletions in this region, had substantial guanylate cyclase activity. There was no associated adenylate cyclase activity, suggesting that the catalytic domain retained its enzymatic specificity. These results provide direct evidence that the carboxyl portion of the membrane form of guanylate cyclase contains a catalytic domain. Homologous regions of the soluble form of guanylate cyclase and adenylate cyclase are likely to have enzymatic properties.  相似文献   

8.
A truncated, 432 residue long, Bordetella pertussis adenylate cyclase expressed in Escherichia coli was analyzed for intrinsic fluorescence properties. The two tryptophans (Trp69 and Trp242) of adenylate cyclase, each situated in close proximity to residues important for catalysis or binding of calmodulin (CaM), produced overlapping fluorescence emission bands upon excitation at 295 nm. CaM, alone or in association with low concentrations of urea, induced important modifications in the spectra of adenylate cyclase such as shifts of the maxima and change in the shape of the bands. From these changes and from the fluorescence spectrum of a modified form of adenylate cyclase, in which a valine residue was substituted for Trp242, it was deduced that, upon binding of CaM to the wild-type adenylate cyclase, only the environment of Trp242 was affected. The fluorescence maximum of this residue, which is more exposed to the solvent than Trp69 in the absence of CaM, is shifted by 13 nm to shorter wavelength upon interaction of protein with its activator. Trypsin cleaved adenylate cyclase into two fragments, one carrying the catalytic domain, and the second carrying the CaM-binding domain (Ladant et al., 1989). The isolated peptides conserved most of the environment around their single tryptophan residues, as in the intact adenylate cyclase, which suggests that the two domains of truncated B. pertussis adenylate cyclase also conserved most of their three-dimensional structure in the isolated forms.  相似文献   

9.
Adenylate and guanylate cyclases, having different but related substrates, are a paradigm for the study of substrate discrimination. A prokaryotic adenylate cyclase gene, phylogenetically related to eukaryotic counterparts, was screened for mutants remodelling the enzyme's specificity. In a first step, a mutant was selected displaying a significant level of guanylate cyclase activity. This was due to a point mutation destroying most of the adenylate cyclase activity. A second selection step restored most of the original activity. This resulted from an additional mutation in the same region, thus permitting the first identification of a functional domain in adenylate and guanylate cyclases.  相似文献   

10.
D C Au  H R Masure  D R Storm 《Biochemistry》1989,28(7):2772-2776
A 2.7-kb cya A gene fragment encoding the amino-terminal end of the calmodulin-sensitive adenylate cyclase from Bordetella pertussis has been placed under the control of the lac promoter for expression in Escherichia coli. Following induction with isopropyl beta-D-thiogalactoside, calmodulin-sensitive adenylate cyclase activity was detected in a cell extract from E. coli. The expression vector directed the synthesis of a 90-kDa polypeptide that was recognized by rabbit polyclonal antibodies raised against the catalytic subunit of B. pertussis adenylate cyclase. Inspection of the deduced amino acid sequence of the cya A gene product revealed a sequence with homology to consensus sequences for an ATP-binding domain found in many ATP-binding proteins. On the basis of the analysis of nucleotide binding proteins, a conserved lysine residue has been implicated in the binding of ATP. A putative ATP-binding domain in the B. pertussis adenylate cyclase possesses an analogous lysine residue at position 58. To test whether lysine 58 of the B. pertussis adenylate cyclase is a crucial residue for enzyme activity, it was replaced with methionine by oligonucleotide-directed mutagenesis. E. coli cells were transformed with the mutant cya A gene, and the expressed gene product was characterized. The mutant protein exhibited neither basal nor calmodulin-stimulated enzyme activity, indicating that lysine 58 plays a critical role in enzyme catalysis.  相似文献   

11.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   

12.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   

13.
A cyaA gene, encoding an adenylate cyclase, was isolated from a filamentous cyanobacterium, Spirulina platensis, by functional complementation of a cya mutant of Escherichia coli, defective in adenylate cyclase activity. The predicted gene product of cyaA contains a signal peptide-like domain, a putative sensor domain similar to the gene product of vsrA of Pseudomonas solanacearum, a putative membrane-spanning domain and an adenylate cyclase-like catalytic domain. Two other positive clones that complemented the E. coli mutant were isolated from the same cyanobacterium, suggesting that several cya genes are functioning in S. platensis.  相似文献   

14.
We report that in Escherichia coli, chemotaxis to sugars transported by the phosphotransferase system is mediated by adenylate cyclase, the nucleotide cyclase linked to the phosphotransferase system. We conclude that adenylate cyclase is required in this chemotaxis pathway because mutations in the cyclase gene (cya) eliminate or impair the response to phosphotransferase system sugars, even though other components of the phosphotransferase system known to be required for the detection of these sugars are relatively unaffected by such mutations. Moreover, merely supplying the mutant bacteria with the products of this enzyme, cyclic AMP and cyclic GMP, does not restore the chemotactic response. Because a residual chemotactic response is observed in certain strains with residual cyclic GMP synthesis but no cyclic AMP synthesis, it appears that the guanylate cyclase activity rather than the adenylate cyclase activity of the enzyme may be required for chemotaxis to sugars transported by the phosphotransferase system. Mutations in the cyclic nucleotide phosphodiesterase gene, which increase the level of both cyclic AMP and cyclic GMP, also reduce chemotaxis to these sugars. Therefore, it appears that control of the level of a cyclic nucleotide is critical for the chemotactic response to phosphotransferase system sugars.  相似文献   

15.
In these studies, the Bordetella pertussis adenylate cyclase toxin-hemolysin homology to the Escherichia coli hemolysin is extended with the finding of cyaC, a homolog to the E. coli hlyC gene, which is required for the production of a functional hemolysin molecule in E. coli. Mutations produced in the chromosome of B. pertussis upstream from the structural gene for the adenylate cyclase toxin revealed a region which was necessary for toxin and hemolytic activities of the molecule. These mutants produced the 216-kDa adenylate cyclase toxin as determined by Western blot (immunoblot) analysis. The adenylate cyclase enzymatic activities of these mutants were equivalent to that of wild type, but toxin activities were less than 1% of that of wild type, and the mutants were nonhemolytic on blood agar plates and in in vitro assays. The upstream region restored hemolytic activity when returned in trans to the mutant strains. This genetic complementation defined a gene which acts in trans to activate the adenylate cyclase toxin posttranslationally. Sequence analysis of the upstream region defined an open reading frame with homology to the E. coli hlyC gene. In contrast to E. coli, this open reading frame is oriented oppositely from the adenylate cyclase toxin structural gene.  相似文献   

16.
Microinjection of monoclonal antibodies (lines 238, 172, and 259) directed against the ras gene product, p21, into Xenopus laevis oocytes accelerated progesterone-induced germinal vesicle breakdown. Antibody 238 had the greatest effect on the acceleration of progesterone-induced oocyte maturation, and this effect was correlated with in vitro inhibition of adenylate cyclase (EC 4.6.1.1) activity in a concentration-dependent manner. Inhibition of adenylate cyclase by antibody 238 was also measured in membranes prepared from oocytes pretreated with either cholera toxin or pertussis toxin. These results suggest a role for the ras gene product in the regulation of vertebrate cell adenylate cyclase activity.  相似文献   

17.
African trypanosomes are protozoan parasites that evade the host immune system by varying their dense antigenic coat. The Variant Surface Glycoprotein (VSG) is expressed exclusively from telomere-linked expression sites that contain in addition to the VSG gene, a number of open reading frames termed Expression Site Associated Genes (ESAGs). Here we demonstrate by complementation of a yeast mutant deleted for adenylate cyclase (cyr-1), that an ESAG from Trypanosoma equiperdum encodes an adenylate cyclase. Furthermore, we report that adjacent to adenylate cyclase in the expression site, is a separate open reading frame that encodes a protein sequence motif similar to the leucine-rich repeat regulatory domain of Saccharomyces cerevisiae and Schizosaccharomyces pombe adenylate cyclases. The finding of two adjacent open reading frames homologous to a single enzyme in yeast suggests that the two expression site encoded proteins may interact to regulate adenylate cyclase activity during the course of an infection.  相似文献   

18.
In two fractions obtained from the bovine A. coronaria adenylate cyclase activity was identified and characterized. The adenylate cyclase activity of the 75,000 X g sediment shows a pH optimum at 7.4. The temperature dependence of this adenylate cyclase activity is linear when represented in the Arrhenius plot, and an Arrhenius activation energy of 13.2 kcal Mol-1 can be calculated for the enzyme reaction. The Km-value of the enzyme to ATP is 6 +/- 0.6 - 10(-4) M. The adenylate cyclase activity of the 75,000 X g sediment can be stimulated by NaF. 5'AMP and adenosine inhibit the adenylate cyclase activity of the 75,000 X g sediment. With regard to the enzyme activity, Mn++ and Co++ replace Mg++, but not Ca++. The monovalentcations Na+ and K+ do not influence the adenylate cyclase activity. In a particulate fraction containing plasma membranes, adenylate cyclase activity was also identified. This adenylate cyclase activity can be stimulated by catecholamines, noradrenaline, and isoproterenol. This stimulation can, however, only be proved for the enzyme in the coronaries of 9-week-old and 2-year-old animals. The adenylate cyclase activity from the coronaries of adult animals is not affected by catecholamines. These findings are discussed with regard to hypertension frequently found in adult animals.  相似文献   

19.
The adenylate cyclase system of the yeast Saccharomyces cerevisiae contains many proteins, including the CYR1 polypeptide, which is responsible for catalyzing the formation of cyclic AMP from ATP, RAS1 and RAS2 polypeptides, which mediate stimulation of cyclic AMP synthesis by guanine nucleotides, and the yeast GTPase-activating protein analog IRA1. We have previously reported that adenylate cyclase is only peripherally bound to the yeast membrane. We have concluded that IRA1 is a strong candidate for a protein involved in anchoring adenylate cyclase to the membrane. We base this conclusion on the following criteria: (i) a disruption of the IRA1 gene produced a mutant with very low membrane-associated levels of adenylate cyclase activity, (ii) membranes made from these mutants were incapable of binding adenylate cyclase in vitro, (iii) IRA1 antibodies inhibit binding of adenylate cyclase to the membrane, and (iv) IRA1 and adenylate cyclase comigrate on Sepharose 4B.  相似文献   

20.
The Bacillus anthracis cya gene encodes a calmodulin-dependent adenylate cyclase. A deletion cya gene product obtained by removing 261 codons at the 5' end was expressed in a protease-deficient lon- E. coli strain and purified to homogeneity. This truncated enzyme (CYA 62) exhibits catalytic and calmodulin-binding properties similar to the properties of wild-type adenylate cyclase from B. anthracis culture supernatants, i.e., a kcat of 1100 s-1 at 30 degrees C and pH 8, an apparent Km for ATP of 0.25 mM, and a Kd for bovine brain calmodulin of 23 nM. The calmodulin-binding domain of the CYA 62 truncated enzyme was labeled with a cleavable radioactive photoaffinity cross-linker coupled to calmodulin. The labeled CYA 62 protein was then cleaved with cyanogen bromide and N-chlorosuccinimide. We show that the calmodulin-binding domain of B. anthracis adenylate cyclase is located within the last 150 amino acid residues of the protein. A further deletion at the 3' end of the CYA 62 coding sequence yielded an adenylate cyclase species (CYA 57) lacking 127 C-terminal amino residues. CYA 57, still sensitive to activation by high concentrations of calmodulin, exhibits less than 0.1% of the specific activity of CYA 62. Binding of 3'dATP (a competitive inhibitor) to CYA 62 was determined by equilibrium dialysis. In the absence of calmodulin, binding of the ATP analogue to this truncated protein was severely impaired, which explains, at least in part, the absolute requirement for calmodulin for the catalytic activity of B. anthracis adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号