首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthesis of C27 sterols (used as a generic term for 3 β-hydroxysterols containing 27 carbon atoms) from squalene and lanosterol, of cholesterol from desmosterol, and of lanosterol from squalene by microsomal fractions from adult rat heart, kidney, and brain was investigated. These conversions required the presence of 105,000g supernatant fraction. Heat treatment of the supernatant fractions resulted in a significant loss of their capacity to stimulate the conversion of squalene to sterols, but the capacity to stimulate conversion of lanosterol to C27 sterols and desmosterol to cholesterol was unaffected. The stimulatory activity (for the conversion of all three substrates) of both the heated and unheated supernatant fractions was lost on treatment with trypsin. Thus the soluble fraction appears to contribute at least two essential protein components for the overall conversion of squalene to cholesterol; one a heat labile protein, which functions in the squalene to lanosterol sequence, and the other a heat-stable protein, which is operative in the pathway between lanosterol and cholesterol. Hepatic supernatant factors required for cholesterol synthesis by liver microsomal enzymes function with heart, kidney, and brain microsomal enzymes in stimulating sterol synthesis from squalene and sterol precursors. Moreover, heart, kidney, and brain supernatant fractions prepared in 100 mm phosphate buffer stimulated cholesterol synthesis from squalene and other sterol precursors by liver microsomes. The supernatant fractions of the extrahepatic tissues prepared in 20 mm phosphate buffer lacked the ability to stimulate the biosynthesis of lanosterol from squalene by liver microsomes but were able to stimulate the conversion of lanosterol to C27 sterols or conversion of desmosterol to cholesterol. These findings indicate that the heat-stable protein factor present in the supernatant fractions from extrahepatic tissues is perhaps identical to that in liver, but that the heat-labile factor in extrahepatic tissues, which catalyzes the cyclization of squalene to lanosterol, differs in some respect from that in liver.  相似文献   

2.
The incorporation of palmitate into lipids by hamster lung subcellular fractions was examined and compared to the simultaneous incorporation of sn-glycero-3-phosphate. The rate of incorporation was greater for the microsomal fraction than for the mitochondria-rich fraction with very little incorporation by the supernatant. The supernatant, however, increased the rate of incorporation by 60–70% when added to the particulate fractions. The presence of CoA, ATP and rac-glycerophosphate in the incubation medium was required for optimal incorporation in all fractions. Comparison of incorporation of sn-glycero-3-phosphate and palmitate into lipids indicated that a great part of palmitate incorporation into 3-sn-phosphatidylcholine did not proceed via the diglyceride pathway. The highest de novo incorporation of palmitate was observed into 3-sn-phosphatidylethanolamine.  相似文献   

3.
Manabe K 《Plant physiology》1975,56(6):772-775
In etiolated pea (Pisum sativum L. cv. Alaska) shoots about 3% of the total extractable phytochrome was found in the mitochondrial fraction and about 4.5% in the microsomal fraction, while over 70% was soluble in the 105,000g supernatant. The value of Δ(ΔA) per milligram of protein was significantly higher in the 105,000g supernatant than in these particulate fractions. The percentage conversion of Pr to Pfr was approximately proportional to the total dose of red light in every subcellular fraction tested, unless the dose approached a saturation level. After a brief irradiation of intact shoots with red light at 26 C, each subcellular fraction showed different patterns of dark transformation in vivo at 26 C; that is, the amount of the particulate-bound phytochrome increased immediately after the irradiation, and a reversion of Pfr to Pr was indicated for the first 2 hr in the 12,000g supernatant, but not at all in the mitochondrial and microsomal fractions. The amounts of Pr in the mitochondrial and microsomal fractions did not change during the dark incubation, while those in the 12,000g supernatant increased with time. Similar results were obtained with apical shoot segments after exposure to red light at 0 C and a subsequent dark incubation on moist filter paper at 26 C.  相似文献   

4.
The microsomal fraction from the spleen (after perfusion) of immunized rabbits incubated for 20 min at 37° C under usual conditions in the presence of energy sources incorporates14C-labelled amino acids both into the solubilized (by adding deoxycholate), and into the nonsolubilized part (15%). The cell supernatant incorporates under these conditions the14C-labelled amino acids into total proteins in the absence of microsomes but in a lower degree. The cell supernatant contains gamma globulin detectable by immunoelectrophoresis. Gamma globulin obtained by specific precipitation of the solubilized microsomal fraction with antigamma-globulin serum had an measurable radioactivity. The precipitate of gamma globulin obtained from the supernatant of the incubation medium in the same manner (after removing the microsomes) had a specific activity twice as high. On separating the microsomal fraction extract and the incubation medium supernatant on DEAE cellulose most fractions show on extinction maximum at 260 nm in the first case and at 280 nm in the second case. The microsomal fraction isolated from the spleen and lymph nodes of immunized pigs-48 and 72 h after revaccination, when incubatedin vitro, incorporated14C-labelled amino acids into total protein. After ultrasonic disintegration in 0.14m NaCl and filtration through a Sephadex G 25 column it is specifically precipitated with the antigammaglobulin serum. Gamma globulin isolated after incubation of the microsomal fraction had a measurable radioactivity. AntiHSA antibodies determined by adsorption on immunosorbent did not possess significant radioactivity. Only the concentrated supernatant of the incubation medium showed minute radioactivity of 75–94 counts/min /ml. The problem of investigating the formation of nascent specific antibodies on a subcellular levelin vitro during the early period of secondary response to the antigen is discussed, in particular the problem of their detection. An erratum to this article is available at .  相似文献   

5.
Ching TM 《Plant physiology》1973,51(2):278-284
A tissue homogenate of megagemetophyte of germinating seeds of Jeffrey pine (Pinus Jefferii Grev. and Balf.) was incubated with sonication-dispersed and albumin-carried 14C-tripalmitin in order to elucidate the sequential and quantitative role of cellular organelles in utilizing lipid reserve in seeds. After 5 minutes at 30 C, 25% of the tracer was localized in the fat body fraction, 9% in the pellet containing mitochondria and glyoxysomes, 14% in the supernatant, and 2% was found as CO2. Radioactivity increased with time of incubation in the latter three fractions indicating the forward direction of utilization. Fat bodies contained mainly lipases and hydrolyzed the tracer to palmitate with diglyceride and monoglyceride as intermediates. About two-thirds of the palmitate had left the fat bodies in 5 minutes and entered the pellet fraction within which the tracer was distributed 1:2 in mitochondria and glyoxysomes, respectively. Longer incubation reduced the ratio to 1:3 while both organelles acquired more radioactive intermediates. Labeled acetyl-CoA and intermediate of β-oxidation were found in both organelle-containing fractions. The supernatant fraction contained radioactive diglycerides, monoglycerides, palmitate, sterol esters, and phospholipids, indicating lipase activity and direct utilization of fatty acid for the synthesis of sterol esters and polar lipids.  相似文献   

6.
1. On incubating cerebral-cortex slices at 37° in an oxygenated medium marked changes resulted in the subcellular distribution of proteins and phosphoproteins in the tissue. The protein content of the nuclear fraction more than doubled, whereas the yields of microsomal and supernatant proteins were both markedly decreased. The amount of phosphoprotein/mg. of protein decreased in the microsomal and supernatant fractions, but showed little change in the nuclear and mitochondrial fractions. The loss of microsomal protein could be partly prevented by rinsing the slices briefly in cold sucrose solution before dispersion; the altered subcellular distribution was apparently related to contamination of the dispersing solution with traces of salts from the medium. 2. The subcellular location of the phosphoprotein sensitive to the effects of electrical pulses applied to cerebral slices in vitro has been reinvestigated by two different procedures. Comparison between unstimulated and stimulated slices after incubation in the presence of [32P]orthophosphate showed that phosphoprotein radioactivity increased on stimulation to a greater extent in a membrane-rich fraction than in a mitochondria-rich fraction, these being obtained by immediate density-gradient fractionation of the tissue dispersion. With fractions isolated by differential centrifuging the percentage increase in a combined mitochondrial and nuclear fraction was 5% as compared with 24% (P<0·02) in the microsomal fraction and 30% in the original dispersion before fractionation. The sensitive phosphoprotein therefore appears to be located in structures sedimenting with the microsomal fraction, rather than with the nuclear fraction as previously claimed.  相似文献   

7.
All membrane-containing fractions isolated from tobacco leaves contained free sterols, sterol glycosides, and sterol esters. The three sterol forms increased, on a dry weight basis, with a decrease in particle size. The supernatant fraction contained only trace amounts of sterol. The major sterols in all cellular fractions, in the order of decreasing amounts, were: stigmasterol, β-sitosterol, campesterol, and cholesterol. The 500g pellet contained the largest percentage of free sterol, while the 46,000g pellet contained the largest percentage of esterified sterol. The individual sterol composition of the free sterol and sterol glycoside fraction was very similar; however, the composition of the sterol ester fraction varied widely among intracellular fraction. The intracellular distribution pattern of cholesterol-14C added to the isolation medium provided evidence that the intracellular sterol distribution pattern is not an artifact. These results support the suggestion that sterols in plant cells may have a physiological function associated with membranes.  相似文献   

8.
Incorporation of leucine-C14 into subcellular fractions of the apical section of pea seedlings has been studied as a function of the length of incubation. The specific activity of the microsomes was higher than that of the supernatant for short but not for long incubations, in agreement with observations on other systems. In this developing tissue the nuclei and especially the mitochondria appear to incorporate amino acid very rapidly. An insoluble fraction of the microsome pellet, which is presumably a liponucleoprotein complex, was found to possess, after 1 hour of incubation, a specific activity much greater than that of the purified microsomal particles or the supernatant fraction. Ninety-eight per cent of the leucine-C14 in the purified microsomal particles has been shown to possess bound amino groups, presumably in peptide linkages, by the DNP-end group method. These particles liberate but little peptide or protein of very high specific activity when they are destroyed by removal of Mg or by hydrolysis of RNA. Microsomal particles were fractionated into an RNA fraction and five protein fractions by means of density gradient centrifugation. By this method 95 per cent of the RNA can be separated from 90 per cent of the protein of the particle. Furthermore, the RNA fraction has been shown to contain very little protein of high specific activity. A particular protein fraction which contains the remaining 5 per cent of the RNA, possessed after 1 hour of incubation a specific activity 2 to 9 times higher than the protein of the other fractions.  相似文献   

9.
Electron micrographs of thin sections of nuclear, microsomal, and mitochondrial fractions obtained from a carrageenin-induced granuloma showed considerable contamination of the heavier by the lighter fractions. Striated collagen fibrils could be identified in the nuclei + debris fraction. Only a few striated fibrils occurred in the mitochondrial fraction; very fine filaments (diameter 50 A) could be seen in this fraction, but could not be distinguished with certainty from fibrillar material derived from broken nuclei. 35 per cent of the mitochondrial and 80 per cent of the microsomal collagen was extractable by 0.2 M NaCl and could be purified by the standard methods of solution and reprecipitation. The amino acid composition of these collagen fractions determined by ion exchange chromatography was within the range normally found for collagen and gelatin from other mammalian species, allowing for 10 to 20 per cent of some non-collagenous contaminant of the microsomal collagen. Hydroxyproline and proline were isolated by chromatography on paper from hydrolysates of the nuclear, mitochondrial, and microsomal collagen fractions, after incubation of tissue slices with L-14C-proline. The specific activities of the hydroxyproline from these collagens were in the approximate ratio 1:2:6, while that of bound hydroxyproline derived from the supernatant was only 1, indicating primary synthesis of collagen in the microsomes. Attempts to demonstrate incorporation of L-14C-proline into collagen or into free hydroxyproline in cell free systems were unsuccessful, nor was it possible to demonstrate non-specific incorporation of L-14C-valine into TCA-insoluble material by various combinations of subcellular fractions.  相似文献   

10.
Studies on Protein Synthesis by Senescing and Kinetin-treated Barley Leaves   总被引:1,自引:0,他引:1  
Using sterile conditions, changes in total protein synthesis were followed. over an 8 day incubation period, in detached first seedling leaves of barley from 8 day old plants during senescence and after kinetin treatment. In senescing leaves, total 14C-alanine incorporation was enhanced by nearly 20% within 6 h of leaf detachment and by about 30 % after 24 h. Kinetin treatment stimulated protein synthesis even more, for total incorporation was promoted ca. 50 % after 6 h and by ca. 60 % after 24 h incubation. The leaf supernatant (30,000 ×g for 30 min) proteins were separated on DEAE-Sephadex (A-50) columns into approximately 14 fractions and changes in 14C labelling of these fractions were studied following leaf detachment and on incubation on water or kinetin for 6 days. In senescing leaves, 14C-incorporation into supernatant proteins was sustained, even as protein levels declined rapidly The varied stabilities of the different leaf proteins was suggested by the characteristically changing specific activities of the different protein fractions. Although kinetin greatly promoted incorporation into all protein fractions, no evidence was surmised of specific effects on individual leaf proteins. Studies of changes in total protein synthesis in attached senescing first seedling leaves taken from plants aged 7 to 27 days revealed a relatively small increase in 14C-incorporation. However, incorporation could be greatly increased in leaves up to 15 days old by detaching and preincubating such leaves for up to 2 days on water, prior to measurement. The promotion of 14C-incorporation into protcins follwing leaf excision could result from early changes in permeability and precursor pool size.  相似文献   

11.
Five ribonucleoprotein (RNP) fractions were isolated from the postmitochondrial supernatant of the pancreas of the guinea pig. Two were obtained from the microsomes which, by deoxycholate (DOC) treatment, were subdivided into a DOC-soluble and a DOC-insoluble fraction. The latter was taken to represent attached RNP particles. Two other fractions obtained from the microsomal supernatant supposedly represent free RNP particles existing as such in the cytoplasm, while a third fraction resisted sedimentation for 20 hours at 105,000 g and is considered to be a soluble nucleoprotein. These fractions exhibited different RNA/protein ratios and also different RNA turnover patterns, as determined after in vivo labelling with adenine-8-C14. However, little discernible differences could be detected in the nucleotide composition of the RNA moieties of these RNP fractions. Amino acid-"activating" enzymes were found to occur in the fraction containing the soluble nucleoproteins. The discussion focuses on the relationships between these fractions and protein synthesis in the pancreas, using data given in this and a previous paper, and data contained in the literature.  相似文献   

12.
The incubation of 4-chloronitrosobenzene (4-CNB) with subcellular fractions of rat liver resulted in the formation of a previously unknown type of hydroxamic acid metabolite for mammals. This new metabolite, N-(4-chlorophenyl)glycolhydroxamic acid (Gl-CHA), is most likely formed through the action of liver transketolase on the substrate 4-CNB. Gl-CHA was produced only by the 10 000g and 105 000g supernatant fractions, and required glucose-6-phosphate as an energy source. No hydroxamic acid metabolites were produced in detectable quantities by the microsomal fraction of the rat liver homogenate. Gl-CHA was positively identified by isolation and comparison to an authentic sample of Gl-CHA. Authentic Gl-CHA was prepared by the condensation of 4-chlorophenylhydroxylamine with glycolic acid in the presence of dicylohexylcarbodiimide. The highest observed conversion of 4-CNB to Gl-CHA was 18%, which occurred at the lowest concentration of 4-CNB incubated with the 105 000g supernatant. Gl-CHA was not produced by C-hydroxylation of the corresponding acetyl-derived hydroxamic acid, since none of the subcellular fractions of rat liver would effect this conversion. The incubation of 4-chloroaniline under identical conditions failed to result in the production of Gl-CHA; however, such an observation is probably not important to the possibility that Gl-CHA might be a significant metabolite in vivo.  相似文献   

13.
The effect of salt stress on the incorporation of [35S]methionine into protein was examined in roots of barley (Hordeum vulgare L. cv California Mariout 72). Plants were grown in nutrient solution with or without 200 millimolar NaCl. Roots of intact plants were labeled in vivo and proteins were extracted and analyzed by fluorography of two-dimensional gels. Although the protein patterns for control and salt-stressed plants were qualitatively similar, the net synthesis of a number of proteins was quantitatively changed. The most striking change was a significant increase of label in two protein pairs that had pIs of approximately 6.3 and 6.5. Each pair consisted of proteins of approximately 26 and 27 kilodaltons (kD). In roots of control plants, the 27-kD proteins were more heavily labeled in the microsomal fraction relative to the 26-kD proteins, whereas the 26-kD proteins were enriched in the post 178,000 g supernatant fraction; in roots of salt treated plants, the 26- and 27-kD proteins were more intensely labeled in both fractions. Labeling of the 26- and 27-kD proteins returned to control levels when salt-stressed plants were transferred to nutrient solution without NaCl. No cross-reaction was detected between the antibody to the 26-kD protein from salt-adapted tobacco cells and the 26- and 27-kD proteins of barley.  相似文献   

14.
A family of specific guanine nucleotide-binding proteins in Dunaliella salina was studied. Polypeptides of different subcellular fractions were separated by electrophoresis and transferred to nitrocellulose or Immobilon membranes. Incubation of the transfer blots with [35S]GTPγS or [α-32P]GTP showed no evidence for GTP-binding proteins in the chloroplast and cytosol fractions. However, two GTP-binding proteins with molecular masses of 28 and 30 kilodaltons were present in the plasma membrane and microsomal fractions. An additional 29 kilodalton GTP-binding protein was detected in the plasma membrane. The mitochondrial fraction contained significant amounts of only the 28 kilodalton GTP-binding protein. Binding of [32P]GTP to the protein blots was completely prevented by 10 micromolar GTP or guanosine 5′-O-(2-thiodiphosphate) (added in 3 × 104-fold excess), whereas ATP or CTP had no effect on the binding. The 28 kilodalton GTP-binding protein was recognized by polyclonal antibodies to the ras-related YPT1 protein of yeast but not by the anti-ras Y13-259 monoclonal antibody. GTP-binding proteins present in the microsomal fraction could not be solubilized by incubation of microsomes with 1 molar NaCl or 0.2 molar Na2CO3, but some GTP-binding activity was solubilized when microsomes were treated with 6 molar urea. These results indicate that D. salina GTP-binding proteins are tightly associated with the membranes. The covalent attachment of fatty acids to these proteins was also investigated. Electrophoresis followed by fluorography of delipidated microsomal proteins extracted from [3H]myristic acid-labeled cells showed an intense labeling of a 28 kilodalton protein. We conclude that D. salina contains proteins resembling the ras-related proteins found in animal cells and higher plants.  相似文献   

15.
Fractionation of horse liver homogenate by centrifugation into heavy membranes at 10 000 × g, microsomal fraction at 105 000 × g, and the supernatant revealed sialate 9-O-lactoyltransferase activity only in the latter fraction. For the enzyme assay, the various fractions were incubated with14C labelled CMP-N-acetylneuraminic acid,N-acetylneuraminic acid and glycoconjugate-boundN-acetylneuraminic acid. Lactoylation was identified in three different TLC systems after acid hydrolysis and purification of the sialic acids in the incubation mixtures. Enzyme activity was found only in the supernatant fraction. Glycoconjugate-boundN-acetylneuraminic acid was the best substrate tested, although some lactoylation was also found when using CMP-N-acetylneuraminic acid.  相似文献   

16.
Lipid composition of whole roots of wheat (Triticum vulgare Vill. cv. Svenno Spring Wheat) and oat (Avena sativa L. cv. Brighton) and of cell wall fractions, mitochondrial fractions and microsomal fractions of these roots were studied. Lipid composition depended upon the level of mineral nutrition. In wheat total phospholipids, phosphatidyl choline and sulfolipid content was highest in the roots grown at the higher salt concentration, while the reverse was true for oat roots. In both species glycolipid and sterol content was lower in the high salt roots, at the same time as higher proportions of them were built into the microsomal fraction. Phosphatidyl choline content of the wheat root membrane fractions increased with the salt level, while the opposite occurred in the oat roots. The phosphatidyl choline content may be correlated with the (Ca2+, Mg2+)-stimulated ATPase activity.  相似文献   

17.
The 105,000 x g supernatant (S105) of liver is required for the conversion of squalene to cholesterol by microsomal membranes. Substantial controversy has existed concerning the properties of what was originally considered to be a single sterol carrier protein present in S105 and required for this conversion. We have now resolved this controversy by the discovery that S105 contains several sterol carrier proteins. Based upon experiments with three substrates, three substrate-specific soluble proteins (with different properties) have been identified which operate at distinct points in microsomal cholesterol synthesis. These proteins are provisionally designated sterol carrier protein1 (SCP1), sterol carrier protein2 (SCP2), and sterol carrier protein3 (SCP3). SCP1 is required for the microsomal conversion of squalene to lanosterol, SCP2 for the microsomal conversion of 4,4-dimethyl-Δ8-cholesterol to C27-sterols, and SCP3 for the microsomal conversion of 7-dehydrocholesterol to cholesterol. Available evidence is consistent with the proposal that a given sterol carrier protein is a soluble constituent of a single microsomal enzyme or enzyme complex, and that it participates both as a carrier for the water-insoluble substrate and as an essential enzyme constituent facilitating catalysis. It may well be that enzymatic transformations of water-insoluble substrates require both microsomal membranes and substrate-specific soluble proteins. This requirement could be a common biological mechanism for water-insoluble substrates.  相似文献   

18.
The distribution of [14C]-labelled material into subcellular fractions of 15-day-old rat brain was studied at 2 and 24 h following intraperitoneal and intracerebral injection of [2-14C]sodium acetate, [U-14C]glucose and [2-14C]mevalonic acid respectively. The total quantity of labelled isoprenoids in the brain was, except for glucose, greater when the precursor was administered intracerebrally. The intraperitoneal route was more advantageous in the case of [U-14C]glucose. The subcellular distribution of both labelled total isoprenoid material and sterol was distinct for each labelled precursor. Intracerebrally injected [U-14C]glucose at both time periods studied suggested no dominance of labelling in any fraction. After intraperitoneal injection of [U-14C]glucose the microsomes were more prominently labelled. Both methods of administration of sodium [2-14C]acetate resulted in heavy labelling of the myelin fraction after 24 h. The total labelled isoprenoids resided mainly in the microsomes 24 h after injection of [2-14C]mevalonic acid. Labelled sterol was found to be localized more in the myelin and microsomal fractions for all three precursors than was the labelled total isoprenoids. Depending on the type of experiment to be conducted, each of these precursors can give different results, which must be interpreted accordingly.  相似文献   

19.
The effect of high protein intake on the turnover rate of the proteins as well as the protein content of liver cellular fractions has been studied in young rats. When rats fed diets containing high levels of casein, the protein content was increased in various cellular fractions of liver. The incorporation of intraperitoneally injected methionine-S35 into the proteins of these fractions was in the following decreasing order: microsomal, supernatant, mitochondrial and nuclear fraction. The rate of disappearance of radioactivity in various fractions was not so much different from one another, but those of microsomal and supernatant fractions were slightly greater than those of the other fractions. The turnover rates of proteins in all cellular fractions and whole homogenate gradually elevated as the casein level in diets increasing from 25 to 60%. However, the inhancement occurred to a lesser degree than that in the turnover rate of liver proteins with increase in the casein level from zero to 25% which was reported previously.  相似文献   

20.
We have recently shown that mitochondrial and plasma-membrane fractions from kidney medulla possess Ca2+-stimulated acylhydrolase and prostaglandin synthase activities. The nature of the enzymic coupling between the Ca2+-stimulated arachidonic acid release and its subsequent conversion into prostaglandins was investigated in subcellular fractions from rabbit kidney medulla. Plasma-membrane, mitochondrial and microsomal fractions were found to have similar apparent Km values for conversion of added exogenous arachidonate into prostaglandins. The rate of prostaglandin biosynthesis (Vmax.) from added arachidonic acid in the microsomal fraction was approx. 2-fold higher than in the other subcellular fractions. In contrast, prostaglandin E2 synthesis from endogenous arachidonate in plasma-membrane and mitochondrial fractions was 3–4-fold higher than in microsomes. Furthermore, Ca2+ stimulated endogenous arachidonate deacylation and prostaglandin E2 generation in the former two fractions but not in microsomes. In mitochondrial or crude plasma-membrane fractions, in which prostaglandin biosynthesis was inhibited with aspirin, arachidonate released from these fractions was converted into prostaglandins by the microsomal prostaglandin synthase. Thus an intracellular prostaglandin generation process that involves inter-fraction transfer of arachidonic acid can operate. Prostaglandin generation by such an inter-fraction process is, however, less efficient than by an intra-fraction process, where arachidonic acid released by mitochondria or crude plasma membranes is converted into prostaglandins by prostaglandin synthase present in the same fraction. This demonstrates the presence of a tight intra-fraction enzymic coupling between Ca2+-stimulated acylhydrolase and prostaglandin synthase enzyme systems in both mitochondrial and plasma-membrane fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号