首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the mechanism of LTB4 receptor down regulation by protein kinase C (PKC) has been investigated using porcine neutrophil membranes. Pretreatment of intact porcine neutrophils with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 2 min prior to the preparation of plasma membrane, demonstrated a reduced binding sites (Bmax) for LTB4 without altering the receptor affinity (Kd). This effect of TPA on LTB4 receptor binding was found to be due to the activation of PKC as membrane treated with purified PKC (type III) produced the same effect. When membranes from neutrophils pretreated with TPA were exposed to non-hydrolyzable GTP analog, GTP-gamma S, or GMP-PNP, no further decrease in receptor Kd was observed, while the Bmax was reduced to the level observed in TPA treated samples. Treatment of isolated neutrophil membranes with purified PKC reduced the Bmax and blocked the effect of GTP analogs on the receptor affinity. These results suggest that, PKC interrupts the receptor binding to G-protein.  相似文献   

2.
IL-18 expression and functional activity have been associated with a range of autoimmune diseases. However, the precise mechanism by which IL-18 induces such pathology remains unclear. In this study we provide direct evidence that IL-18 activates neutrophils via TNF-alpha induction, which drives the production of leukotriene B(4) (LTB(4)), which in turn leads to neutrophil accumulation and subsequent local inflammation. rIL-18 administered i.p. resulted in the local synthesis of LTB(4) and a rapid influx of neutrophils into the peritoneal cavity, which could be effectively blocked by the LTB(4) synthesis inhibitor MK-886 (MK) or its receptor antagonist CP-105,696. IL-18-induced neutrophils recruitment and LTB(4) production could also be blocked by a neutralizing anti-TNF-alpha Ab. In addition, IL-18 failed to induce neutrophil accumulation in vivo in TNFRp55(-/-) mice. In an IL-18-dependent murine collagen-induced arthritis model, administration of MK significantly inhibited disease severity and reduced articular inflammation and joint destruction. Furthermore, MK-886-treated mice also displayed suppressed proinflammatory cytokine production in response to type II collagen in vitro. Finally, we showed that IL-18-activated human peripheral blood neutrophils produced significant amounts of LTB(4) that were effectively blocked by the MK. Together, these findings provide a novel mechanism whereby IL-18 can promote inflammatory diseases.  相似文献   

3.
Platelet-activating factor (PAF) is a potent lipid mediator of inflammation that can act on human neutrophils. When neutrophils are stimulated with PAF at concentrations greater than 10 nM, a double peak of intracellular calcium mobilization is observed. The second calcium peak observed in PAF-treated neutrophils has already been suggested to come from the production of endogenous leukotriene B4 (LTB4). Here we demonstrate the involvement of endogenous LTB4 production and subsequent activation of the high affinity LTB4 receptor (BLT1) in this second calcium mobilization peak observed after stimulation with PAF. We also show that the second, but not the first peak, could be desensitized by prior exposure to LTB4. Moreover, when neutrophils were pre-treated with pharmacological inhibitors of LTB4 production or with the specific BLT1 antagonist, U75302, PAF-mediated neutrophil degranulation was inhibited by more than 50%. On the other hand, pre-treating neutrophils with the PAF receptor specific antagonist (WEB2086) did not prevent any LTB4-induced degranulation. Also, when human neutrophils were pre-treated with U75302, PAF-mediated chemotaxis was reduced by more than 60%. These data indicate the involvement of BLT1 signaling in PAF-mediated neutrophil activities.  相似文献   

4.
5.
Leukotriene B4 (LTB4) and 12-(R)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-[R]-HETE) have been postulated to contribute to the pathophysiology of inflammatory diseases. SB 201993, (E)-3-[[[[6-(2-carboxyethenyl)-5-[[8-(4-methoxyphenyl)octyl] oxy]-2-pyridinyl] methyl] thio] methyl] benzoic acid, identified from a chemical series designed as ring-fused analogs of LTB4, was evaluated as an antagonist of LTB4- and 12-(R)-HETE-induced responses in vitro and for anti-inflammatory activity in vivo. SB 201993 competitively antagonized [3-H]-LTB4 binding to intact human neutrophils (Ki = 7.6 nM) and to membranes of RBL 2H3 cells expressing the LTB4 receptor (RBL 2H3-LTB4R; IC50 = 154 nM). This compound demonstrated competitive antagonism of LTB4- and 12-(R)-HETE-induced Ca2+ mobilization responses in human neutrophils (IC50s of 131 nM and 105 nM, respectively) and inhibited LTB4-induced Ca2+ mobilization in human cultured keratinocytes (IC50 = 61 nM), RBL 2H3-LTB4R cells (IC50 = 255 nM) and mouse neutrophils (IC50 = 410 nM). SB 201993 showed weak LTD4-receptor binding affinity (Ki = 1.9 microM) and inhibited 5-lipoxygenase (IC50 of 3.6 microM), both in vitro and ex vivo. In vivo, SB 201993 inhibited LTB4-induced neutrophil infiltration in mouse skin and produced dose-related, long lasting topical anti-inflammatory activity against the fluid and cellular phases of arachidonic acid-induced mouse ear inflammation (ED50 of 580 microg/ear and 390 microg/ear, respectively). Similarly, anti-inflammatory activity was also observed in the murine phorbol ester-induced cutaneous inflammation model (ED50 of 770 and 730 microg/ear, respectively, against the fluid and cellular phases). These results indicate that SB 201993 blocks the actions of LTB4 and 12-(R)-HETE and inhibits a variety of inflammatory responses; and thus may be a useful compound to evaluate the role of these mediators in disease models.  相似文献   

6.
Leukotriene B4 (LTB4) is reported to exert its biological activity in neutrophils through the increase in cytosolic free calcium that follows binding to its specific receptor. Leukotriene B5 has been shown to be far less active than LTB4. Therefore we compared the capacity of LTB4 and LTB5 to stimulate the rise in cytosolic free calcium using fura-2-loaded human neutrophils, to assess the relationship between the calcium mobilizing activity and biological potency of LTB4 and LTB5. At any concentration tested, LTB5 was less active than LTB4 in increasing cytosolic free calcium. ED50 for LTB4 and LTB5 were 5 X 10(-10) M and 5 X 10(-9) M, respectively. The difference in the binding affinities of LTB4 and LTB5 to the LTB4 receptor has been reported to explain the difference in their biological activities. In the present study we further demonstrated that the calcium mobilizing activity of LTB4 and LTB5 also correlates the different biological activity of the two compounds.  相似文献   

7.
Diets that are enriched with fish oil have been shown to alter arachidonic acid metabolism via the cyclooxygenase pathway. Recently it has been shown that one of the major component fatty acids of fish oil, eicosapentaenoate (EPA), is a substrate for the leukotriene B (LTB) pathway when added exogenously to human neutrophils in vitro. We fed a diet that contained 8-10gm/day of EPA to four human subjects for three weeks and compared the arachidonate metabolism of their neutrophils to the same functions while the subjects were on their usual diet. The fish oil-supplementation increased neutrophil EPA content from undetectable levels to 7.4 +/- 2.4% (p less than 0.01, expressed as % of total fatty acid), and decreased arachidonate from 15.4 +/- 2.3% to 12.8 +/- 2.3% (p less than 0.05). Leukotriene B5 was identified as a metabolite during the fish oil-diet by its chromatographic profile and mass spectrum. During the experimental diet LTB4, decreased from 160 +/- 37 ng/10(7) neutrophils to 120 +/- 12 (p less than 0.05), and LTB5 increased from 0 to 39 +/- 9 ng/10(7) neutrophils (p less than 0.005). The diet had no effect on neutrophil aggregation or adherence to nylon fibers.  相似文献   

8.
Directed migration of polymorphonuclear neutrophils (PMN) is required for adequate host defense against invading organisms and leukotriene B(4) (LTB(4)) is one of the most potent PMN chemoattractants. LTB(4) exerts its action via binding to BLT1, a G protein-coupled receptor. G protein-coupled receptors are phosphorylated by G protein-coupled receptor kinases (GRK) in an agonist-dependent manner, resulting in receptor desensitization. Recently, it has been shown that the human BLT1 is a substrate for GRK6. To investigate the physiological importance of GRK6 for inflammation and LTB(4) signaling in PMN, we used GRK6-deficient mice. The acute inflammatory response (ear swelling and influx of PMN into the ear) after topical application of arachidonic acid was significantly increased in GRK6(-/-) mice. In vitro, GRK6(-/-) PMN showed increased chemokinetic and chemotactic responses to LTB(4). GRK6(-/-) PMN respond to LTB(4) with a prolonged increase in intracellular calcium and prolonged actin polymerization, suggesting impaired LTB(4) receptor desensitization in the absence of GRK6. However, pre-exposure to LTB(4) renders both GRK6(-/-) as well as wild-type PMN refractory to restimulation with LTB(4), indicating that the presence of GRK6 is not required for this process to occur. In conclusion, GRK6 deficiency leads to prolonged BLT1 signaling and increased neutrophil migration.  相似文献   

9.
Stimulation of neutrophils with LTB(4) or PAF results in the production of a rapidly oscillating actin polymerization/depolymerization response. Treatment of neutrophils with inhibitors of PKC prior to stimulation with ligand resulted in a masking of the F-actin oscillations. Because myosin has been shown to be a substrate for neutrophil PKC, this protein was investigated as a potential downstream mediator of F-actin oscillations. Stimulation of neutrophils with LTB(4) resulted in myosin light chain being serine phosphorylated in a PKC-dependent manner. This phosphorylation was shown to occur in a manner that is kinetically distinct from the myosin phosphorylation induced by FMLP, a potent activator of actin polymerization that alone does not induce F-actin oscillations. Additionally, disruption of intracellular actin-myosin interactions resulted in inhibition of LTB(4)- as well as PAF-induced F-actin oscillations. These data suggest that PKC and downstream phosphorylation of myosin as well as actin-myosin interaction may play roles in mediating the production of neutrophil F-actin oscillations.  相似文献   

10.
Although endocannabinoids are important players in nociception and obesity, their roles as immunomodulators remain elusive. The main endocannabinoids described to date, namely 2-arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA), induce an intriguing profile of pro- and anti-inflammatory effects. This could relate to cell-specific cannabinoid receptor expression and/or the action of endocannabinoid-derived metabolites. Importantly, 2-AG and AEA comprise a molecule of arachidonic acid (AA) in their structure and are hydrolyzed rapidly. We postulated the following: 1) the released AA from endocannabinoid hydrolysis would be metabolized into eicosanoids; and 2) these eicosanoids would mediate some of the effects of endocannabinoids. To confirm these hypotheses, experiments were performed in which freshly isolated human neutrophils were treated with endocannabinoids. Unlike AEA, 2-AG stimulated myeloperoxidase release, kinase activation, and calcium mobilization by neutrophils. Although 2-AG did not induce the migration of neutrophils, it induced the release of a migrating activity for neutrophils. 2-AG also rapidly (1 min) induced a robust biosynthesis of leukotrienes, similar to that observed with AA. The effects of 2-AG were not mimicked nor prevented by cannabinoid receptor agonists or antagonists, respectively. Finally, the blockade of either 2-AG hydrolysis, leukotriene (LT) B(4) biosynthesis, or LTB(4) receptor 1 activation prevented all the effects of 2-AG on neutrophil functions. In conclusion, we demonstrated that 2-AG potently activates human neutrophils. This is the consequence of 2-AG hydrolysis, de novo LTB(4) biosynthesis, and an autocrine activation loop involving LTB(4) receptor 1.  相似文献   

11.
Interleukin-1 is a potent stimulator of arachidonic acid (AA) metabolism and this activity could be attributed to the activation of the prostaglandin-forming enzyme cyclooxygenase or of the arachidonic-releasing enzyme phospholipase A2 or both. Prostaglandin E2 (PGE2), a cyclooxygenase product, and LTB4 (5-(S),12-(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid), a lipoxygenase product, are potent mediators of inflammation. Recently a new cytokine produced by macrophages and named interleukin-1 receptor antagonist (IL-1ra) (MW 22,000 Da) which specifically binds and blocks IL-1 receptors, has proven to be a potent inflammatory inhibitor. In our studies we found that monocyte suspensions, pretreated with hrIL-1ra at increasing concentrations (0.25-250 ng/ml) for 10 min and then treated with LPS in an overnight incubation inhibits, in a dose-dependent manner, the generation of LTB4 as measured by the highly sensitive radioimmunoassay method. In monocytes pretreated with hrIL-1ra (250 ng/ml) for 10 min and treated with arachidonic acid (10(-5)-10(-9) M) and LPS overnight, the release of LTB4 was partially inhibited when compared to hrIL-1ra-untreated cells. Moreover, hrIL-1ra (250 ng/ml) caused a partial inhibition of monocyte LTB4 production when the cells were activated with AA (10(-7) M) and then treated with IL-1 beta (5 ng/ml) overnight or 24 hr incubation. In addition, human monocytes pretreated for 10 min with increasing doses of hrIL-1ra (0.25-250 ng/ml) and then treated with hrIL-1 alpha (5 ng/ml) or beta (5 ng/ml) for 18 hr, also resulted in the inhibition of PGE2 generation as measured by RIA when compared with hrIL-1ra-untreated cells. When the cells were treated with hrIL-1ra (250 ng/ml) and activated for 18 and 48 hr with increasing doses of hrIL-1 beta a strong inhibitory effect was found on PGE2 production. HrIL-1ra used at 15 ng/ml gave a partial inhibition of LTB4 generation, after LPS (1-100 ng/ml) treatment, while NDGA totally blocked the production of LTB4. Moreover, PGE2 released by macrophages activated with LPS (100 ng/ml) or hrIL-1 beta (5 ng/ml) at 18 hr incubation time was strongly inhibited when hrIL-1ra (250 ng/ml) was used. These data suggest that the inhibition of LTB4 and PGE2 by this new macrophage-derived monokine IL-1ra occurs through the block of the IL-1 receptor, rather than phospholipase A2, and thus IL-1ra may offer a potential therapeutic approach to inflammatory states.  相似文献   

12.
Leukotriene B4 (5S,12R-dihydroxy-6,14-cis,8,10-trans-eicosatetraenoic acid, LTB4) is released from neutrophils exposed to calcium ionophores. To determine whether LTB4 might be produced by ligand-receptor interactions at the plasmalemma, we treated human neutrophils with serum-treated zymosan (STZ), heat-aggregated IgG and fMet-Leu-Phe (fMLP), agonists at the C3b, Fc and fMLP receptors respectively. STZ (10 mg/ml) provoked the formation of barely detectable amounts of LTB4 (0.74 ng/10(7) cells); no omega-oxidized metabolites of LTB4 were found. Adding 10 microM-arachidonate did not significantly increase production of LTB4 or its metabolites. Addition of 50 microM-arachidonate (an amount which activates protein kinase C) before STZ caused a 40-fold increase in the quantity of LTB4 and its omega-oxidation products. Neither phorbol myristate acetate (PMA, 200 ng/ml) nor linoleic acid (50 microM), also activators of protein kinase C, augmented generation of LTB4 by cells stimulated with STZ. Neither fMLP (10(-6) M) nor aggregated IgG (0.3 mg/ml) induced LTB4 formation (less than 0.01 ng/10(7) cells). Moreover, cells exposed to STZ, fMLP, or IgG did not form all-trans-LTB4 or 5-hydroxyeicosatetraenoic acid; their failure to make LTB4 was therefore due to inactivity of neutrophil 5-lipoxygenase. However, adding 50 microM-arachidonate to neutrophil suspensions before fMLP or IgG triggered LTB4 production, the majority of which was metabolized to its omega-oxidized products (fMLP, 20.2 ng/10(7) cells; IgG, 17.1 ng/10(7) cells). The data show that neutrophils exposed to agonists at defined cell-surface receptors produce significant quantities of LTB4 only when treated with non-physiological concentrations of arachidonate.  相似文献   

13.
Monosodium urate (MSU) crystals stimulate the production of arachidonic acid metabolites by human neutrophils and platelets. Neutrophils exposed to MSU generated leukotriene B (LTB), 6-trans-LTB4, 12-epi-6-trans-LTB4, and 5S, 12S DHETE from endogenous sources of arachidonate. In addition to these metabolites both monohydroxyeicosatetraenoic acids (i.e., 5-HETE) and omega-oxidation products (i.e., 2O -COOH LTB4) were formed by neutrophils exposed to MSU. Addition of exogenous arachidonic acid led to increased formation of each of these metabolites. When neutrophils were treated with colchicine (10 microM), LTB4 but not 5-HETE formation was impaired. (1-14C)Arachidonate-labeled platelets exposed to MSU released (1-14C)-arachidonate, (14C)-12 HETE, (14C)-HHT and (14C)-thromboxane B2. Results indicate that MSU stimulates arachidonic acid metabolism in both human neutrophils and platelets. Moreover, they suggest not only that metabolites of arachidonate may be considered as possible candidates for mediators of inflammation in crystal-associated diseases, but that colchicine blocks the formation of LTB4.  相似文献   

14.
Arachidonic acid metabolism by 5-lipoxygenase leads to production of the potent inflammatory mediators, leukotriene (LT) B4 and the cysteinyl LT. Relative synthesis of these subclasses of LT, each with different proinflammatory properties, depends on the expression and subsequent activity of LTA4 hydrolase and LTC4 synthase, respectively. LTA4 hydrolase differs from other proteins required for LT synthesis because it is expressed ubiquitously. Also, in vitro studies indicate that it possesses an aminopeptidase activity. Introduction of cysteinyl LT and LTB4 into animals has shown LTB4 is a potent chemoattractant, while the cysteinyl LT alter vascular permeability and smooth muscle tone. It has been impossible to determine the relative contributions of these two classes of LT to inflammatory responses in vivo or to define possible synergy resulting from the synthesis of both classes of mediators. To address this question, we have generated LTA4 hydrolase-deficient mice. These mice develop normally and are healthy. Using these animals, we show that LTA4 hydrolase is required for the production of LTB4 in an in vivo inflammatory response. We show that LTB4 is responsible for the characteristic influx of neutrophils accompanying topical arachidonic acid and that it contributes to the vascular changes seen in this model. In contrast, LTB4 influences only the cellular component of zymosan A-induced peritonitis. Furthermore, LTA4 hydrolase-deficient mice are resistant to platelet-activating factor, identifying LTB4 as one mediator of the physiological changes seen in systemic shock. We do not identify an in vivo role for the aminopeptidase activity of LTA4 hydrolase.  相似文献   

15.
Neutrophils are involved in inflammation through leukotriene (LT) production. The predominant proinflammatory leukotriene released from neutrophils is LTB4, which serves as a biological marker of inflammation. The purpose of this study was to optimize the conditions ex vivo for LTB4 production by neutrophils from horses and dogs, and platelets from chickens. Optimal production of LTB4 was characterized by incubation time (2.5, 5, 10, 15 or 20 min), temperature (25 or 37 degrees C), and calcium ionophore A23187 concentration (0.1, 1, 10 or 20 microM). Incubation longer than 2.5 min did not increase production of LTB4 in chickens or horses; in dogs, incubation for 2.5 and 10 min resulted in the highest concentrations of LTB4 (P相似文献   

16.
Peripheral blood neutrophils from patients with allergic rhinitis and from normal subjects were incubated for 5 min at 37 degrees C with 0.15 microM calcium ionophore A23187 in the absence or presence of exogenous arachidonic acid (2.5 to 10 microM). In neutrophils from allergic patients, the leukotriene B4 (LTB4) level was significantly increased by exogenous arachidonic acid in a concentration-dependent manner (16.2 +/- 4.2 and 38.1 +/- 6.8 pmol/5 min per 2 X 10(6) cells in the absence and presence of 10 microM arachidonic acid, respectively; P less than 0.005; n = 8). The LTB4 level in neutrophils from healthy subjects was only 0.97 +/- 0.17 pmol/5 min per 2 x 10(6) cells (n = 5) and was not enhanced by exogenous arachidonate. When cells from allergic patients were challenged in the presence of exogenous [1-14C]arachidonic acid, released LTB4 was radiolabeled and the incorporated radioactivity increased with the labeled arachidonate concentration. Labeled LTB4 was never detectable after incubating neutrophils from normal donors with exogenous labeled arachidonate. When neutrophils were incubated with [1-14C]arachidonate for 1 h, the different lipid pools of the two cell populations were labeled but both types of neutrophils produced unlabeled LTB4 in response to ionophore stimulation. The hydrolysis of choline and ethanolamine phospholipids into diacyl-, alkenylacyl- and alkylacyl-species revealed that solely the alkylacyl-subclass of phosphatidylcholine was unlabeled. We conclude (i) that neutrophils from allergic patients stimulated by low ionophore concentration produce more LTB4 than neutrophils from healthy subjects and incorporate exogenous arachidonate, (ii) that endogenous arachidonate converted to LTB4 by the 5-lipoxygenase pathway may provide only from 1-O-alkyl-2-arachidonoyl-glycero-3-phosphocholine.  相似文献   

17.
Since adhesion of neutrophils (PMN) to endothelial cells may influence PMN activation responses, we examined whether adhesion of PMN to TNF alpha-activated human umbilical vein endothelial cells (HUVEC) stimulates leukotriene B4 (LTB4) production. Endothelial adhesivity towards PMN increased after HUVEC pretreatment with TNF alpha for 4 h. LTB4 production increased markedly in response to stimulation with arachidonic acid (20 microM) when PMN were added to the hyperadhesive HUVEC. In contrast, stimulation of PMN in suspension did not potentiate LTB4 production. LTB4 production persisted when PMN were applied to TNF alpha-pretreated HUVEC fixed with 1% paraformaldehyde excluding the possibility that metabolic activity of endothelium participates in this response. PMN adhesion to plastic and gelatin also enhanced LTB4 indicating that adhesion was a critical event in inducing LTB4 production. We used monoclonal antibodies (mAb) to adhesion molecules on endothelial cells (i.e., endothelial leukocyte adhesion molecule-1 (ELAM-1) and intercellular adhesion molecule-1 (ICAM-1)) or on PMN (CD18) to assess the role of PMN adhesion to the activated endothelium on LTB4 potentiation. Both anti-ELAM-1 mAb and anti-ICAM-1 mAb inhibited PMN adhesion (by 55 and 41%, respectively) as well as LTB4 production (by 65 and 50%, respectively). Anti-CD18 mAb also reduced the adhesion (65%) and the LTB4 production (66%). Furthermore, combination of anti-ELAM-1 mAb (H18/7) and anti-ICAM-1 mAb (RR1/1) or of anti-ELAM-1 mAb (H18/7) and anti-CD18 mAb (IB4) had an additive effect in inhibiting both PMN adhesion as well as LTB4 production. PMN adherence to immobilized recombinant soluble rELAM-1 or rICAM-1 also increased LTB4 production, which was prevented with relevant mAbs. However, neither rELAM-1 nor rICAM-1 stimulated LTB4 production of PMN in suspension. We conclude that PMN adhesion to TNF alpha-stimulated endothelial cells enhances LTB4 production by PMN, a response activated by binding of PMN to expressed endothelial cell surface adhesion molecules.  相似文献   

18.
We examined the role of circulating granulocytes in the pulmonary microvascular response to leukotriene B4 (LTB4) by prior depletion of circulating granulocytes using hydroxyurea. LTB4 (2 micrograms/kg injection followed by infusion of 2 micrograms/kg over 15 min) produced transient increases in pulmonary arterial pressure and pulmonary vascular resistance, indicating that neutrophils were not required for the pulmonary hemodynamic effects of LTB4. Infusion of LTB4 in granulocyte-depleted sheep also resulted in transient increases in pulmonary lymph flow (QL) with no significant change in the lymph-to-plasma protein concentration ratio (L/P), findings similar to those in control animals. In vitro studies indicated that LTB4 (10(-7) or 10(-9) M) produced a transient adherence of neutrophils to cultured pulmonary artery endothelial monolayers. Maximal responses occurred at 10 min after the addition of LTB4 to the endothelial cell-neutrophil coculture system, and the adherence decreased to base line within 60 min. LTB4 infusion in sheep also produced a transient uptake of autologous 111In-oxine-labeled neutrophils. The results indicate that LTB4-mediated increase in pulmonary transvascular protein clearance (QL x L/P) is independent of circulating granulocytes.  相似文献   

19.
By using human neutrophils we studied the on-off phenomenon for leukotriene B4 (LTB4) -induced functional responses compared with fMetLeuPhe (fMLP). LTB4 induced rapidly appearing and disappearing neutrophil chemiluminescent (CL), superoxide anion formation, aggregatory and membrane depolarizing responses, whereas fMLP responses were slower both in onset and termination. Increases of intracellular calcium concentrations (as reflected by quin2 and fura-2 fluorescence) were of similar magnitude for both stimuli; however, LTB4 responses were more rapidly terminated and fMLP responses were biphasic. When intracellular calcium fluxes, calmodulin or protein kinase C activities were inhibited by quin2, trifluoperazine, verapamil or 3,4,5-trimethoxybenzoic acid 8-diethylamino)octyl ester (TMB-8), profound changes were noted for chemiluminescent and aggregation kinetics induced by fMLP, whereas kinetics of LTB4 responses were less affected. When drugs were used to modulate cAMP levels, or to inhibit cyclo- and lipoxygenase metabolites of arachidonic acid, no effects on response kinetics were observed. Cytochalasin B both amplified and delayed responses although chemiluminescent responses to fMLP were amplified more than those to LTB4. Despite those effects cytochalasin B did not enhance peak fura-2 or quin2 responses to either fMLP or LTB4. Thus, LTB4 rapidly initiates functional responses in neutrophils, and stimulus-specific response patterns are already discernable during the mobilization of calcium, and can be modulated by interference with calcium-dependent reactions.  相似文献   

20.
The cellular response in the cutaneous leishmaniasis lesion (CL), of BALB/c mice treated topically with an ointment composed of 15% paromomycin and 12% methylbenzethonium chloride (PR-ointment) was studied. In the infected, untreated control group, the lesion showed progressive necrosis with an increase in the number of parasites, macrophages, lymphocytes, and polymorphonuclear cells over a period of 18 weeks. In the PR ointment-treated group, complete healing of the lesion was observed 4 weeks after termination of treatment, but total elimination of the parasites from the lesion was observed only 2 weeks later. A marked reduction in the number of macrophages and polymorphonuclear cells was observed during the healing process. A similar phenomenon was observed with mice inoculated intraperitoneally with paromomycin alone, although total elimination of the parasites from the lesions of these mice was not demonstrated over a period of 18 weeks. Neither L3T4 helper T cells nor Ly2 cytotoxic suppressor T cells were detected in the CL lesion, either before or after treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号