首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Although inhibition of glutathione reductase (GR) has been demonstrated to cause a decrease in reduced glutathione (GSH) and increase in glutathione disulfide (GSSG), a systematic study of the effects of GR inhibition on thiol redox state and related systems has not been noted. By employing a monkey kidney cell line as the cell model and 2-acetylamino-3-[4-(2-acetylamino-2-carboxy-ethylsulfanylthio carbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA) as a GR inhibitor, an investigation of the effects of GR inhibition on cellular thiol redox state and related systems was conducted. Our study demonstrated that, in addition to a decrease in GSH and increase in GSSG, 2-AAPA increased the ratios of NADH/NAD+ and NADPH/NADP+. Significant protein glutathionylation was observed. However, the inhibition did not affect the formation of reactive oxygen species or expression of antioxidant defense enzyme systems [GR, glutathione peroxidase, catalase, and superoxide dismutase] and enzymes involved in GSH biosynthesis [γ-glutamylcysteine synthetase and glutathione synthetase].  相似文献   

3.
4.
The control of medial and neointimal growth, in which vascular smooth muscle (VSM) plays a central role, is most important to the development of hypertension and atherosclerosis, respectively. Growth of vascular smooth muscle cells is regulated by a number of factors, including the vasodilator nitric oxide (NO). In addition, NO modulates intracellular thiol redox states and the thiol redox state of the cell influences NO production. We, therefore, examined the nature of the effect of NO on growth of VSM cells and its modulation by cellular glutathione content. Here, we report that NO, either generated by NO donors or synthesized by iNOS in VSM cells, inhibited DNA synthesis and induced apoptosis in this cell type. NO-induced apoptosis was associated with a significant decrease in the intracellular concentration of reduced glutathione and with an increase in the level of the tumor suppressor gene p53 mRNA. Moreover, addition of glutathione monoethylester to the culture restored the level of reduced glutathione in VSM cells, and prevented the NO-induced increase in p53 expression and programmed cell death. Our findings suggest a role for reduced glutathione in protecting VSM cells exposed to NO from apoptosis.  相似文献   

5.
Intracellular defence mechanisms against oxidative stress may play an important role in the progression of liver diseases, including cholangiopathies. The multifunctional anti-apoptotic hepatocyte growth factor (HGF) has been suggested to have antioxidant functions. The effect of HGF upon cell viability, the generation of ROS, the expression of genes that play a role in ROS defence, and the activation of caspase-3 were measured in bile duct epithelial (BDE) cells in the presence or absence of H(2)O(2). HGF reduced H(2)O(2)-induced loss of viability, diminished H(2)O(2)-mediated ROS generation and abrogated H(2)O(2)-triggered changes in GSH/GSSG ratio. Furthermore, HGF increased the gene-expression of gamma-glutamylcysteine synthetase (GCLC) and glutathione reductase (GSR), while no effect was seen upon the gene-expression of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase (GPX1), and glutathione synthetase (GSR). Finally, HGF diminished the proteolytical activation of the key mediator of apoptosis (caspase-3) after H(2)O(2) exposure. Together, HGF may improve viability in bile duct epithelia cells after H(2)O(2) induced toxicity by proliferation, strengthening the intrinsic antioxidant defences, and/or by an attenuation of apoptosis. These in vitro results support the evaluation of HGF as antioxidative factor in hepatobiliary pathologies.  相似文献   

6.
7.
8.
Polycyclic aromatic hydrocarbons (PAH) are common environmental pollutants that suppress the immune system in part by inducing pro/pre-B cell apoptosis. The PAH-induced death signaling pathway resembles the signaling cascade activated during clonal deletion and modeled by B cell receptor cross-linking or by dexamethasone exposure of immature surface Ig(+) B cells in that apoptosis is mediated by NF-kappa B down-regulation. Because a PAH-induced, clonally nonrestricted deletion of B cells would have important implications for B cell repertoire development, the nature of the PAH-induced intracellular death signal was studied further. Particular emphasis was placed on the roles of growth arrest and c-Myc, p27(Kip1), and p21(WAF1) expression, because all of these elements contribute to clonal deletion. As in clonal deletion models, and as predicted by the down-regulation of NF-kappa B, PAH-induced death of pro/pre-B cells was at least partially dependent on c-Myc down-regulation. Furthermore, whereas dexamethasone induced a G(0)/G(1) cell cycle arrest, PAH had no effect on pro/pre-B cell growth, indicating that growth arrest and apoptosis occur by separable signaling pathways in this early phase of B cell development. Finally, in contrast to clonal deletion, PAH-induced pro/pre-B cell death was not dependent on p27(Kip1) or p21(WAF1) up-regulation but did coincide with p53 induction. These results distinguish the PAH-induced apoptosis pathway from that activated during clonal deletion and indicate that signaling cascades leading to growth arrest and/or apoptosis in pro/pre-B cells differ from those active at later B cell developmental stages.  相似文献   

9.
10.
Dipyridyl disulfide (DPS) is a highly reactive thiol oxidant that functions as electron acceptor in thiol-disulfide exchange reactions. DPS is very toxic to yeasts, impairing growth at low micromolar concentrations. The genes TRX2 (thioredoxin), SOD1 (superoxide dismutase), GSH1 (gamma-glutamyl-cysteine synthetase) and, particularly, GLR1 (glutathione reductase) are required for survival on DPS. DPS is uniquely thiol-specific, and we found that the cellular mechanisms for DPS detoxification differ substantially from that of the commonly used thiol oxidant diamide. In contrast to this oxidant, the full antioxidant pools of glutathione (GSH) and thioredoxin are required for resistance to DPS. We found that DPS-sensitive mutants display increases in the disulfide form of GSH (GSSG) during DPS exposure that roughly correlate with their more oxidizing GSH redox potential in the cytosol and their degree of DPS sensitivity. DPS seems to induce a specific disulfide stress, where an increase in the cytoplasmic/nuclear GSSG/GSH ratio results in putative DPS target(s) becoming sensitive to DPS.  相似文献   

11.
In a previous work, it was shown that in cells after a decrease of cellular glutathione content, toxic zinc effects, such as protein synthesis inhibition or GSSG (glutathione, oxidized form) increases, were enhanced. In this study, zinc toxicity was determined by detection of methionine incorporation as a parameter of protein synthesis and GSSG increase in various lung cell lines (A549, L2, 11Lu, 16Lu), dependent on enhanced GSSG reductase activities and changed glutathione contents. After pretreatment of cells with dl-buthionine-[R,S]-sulfoximine (BSO) for 72 h, cellular glutathione contents were decreased to 15–40% and GSSG reductase activity was increased to 120–135% in a concentration-dependent manner. In BSO pretreated cells, the IC50 values of zinc for methionine incorporation inhibition were unchanged as compared to cells not pretreated. The GSSG increase in BSO pretreated cells by zinc was enhanced in L2, 11Lu, and 16Lu cells, whereas in A549 cells, the GSSG increase by zinc was enhanced only after pretreatment with the highest BSO concentration. Inhibition of GSSG reductase in alveolar epithelial cells was observed at lower zinc concentrations than needed for methionine incorporation inhibition, whereas in fibroblastlike cells, inhibition of GSSG reductase occurred at markedly higher zinc concentrations as compared to methionine incorporation inhibition. These results demonstrate that GSSG reductase is an important factor in cellular zinc susceptibility. We conclude that reduction of GSSG is reduced in zinc-exposed cells. Therefore, protection of GSH oxidation by various antioxidants as well as enhancement of GSH content are expected to be mechanisms of diminishing toxic cellular effects after exposure to zinc.  相似文献   

12.
Selol is an organic selenitetriglyceride formulation containing selenium at +4 oxidation level that can be effectively incorporated into catalytic sites of of Se-dependent antioxidants. In the present study, the potential antioxidative and cytoprotective effects of Selol against sodium nitroprusside (SNP)-evoked oxidative/nitrosative stress were investigated in PC12 cells and the underlying mechanisms analyzed. Spectrophoto- and spectrofluorimetic methods as well as fluorescence microscopy were used in this study; mRNA expression was quantified by real-time PCR. Selol dose-dependently improved the survival and decreased the percentage of apoptosis in PC12 cells exposed to SNP. To determine the mechanism of this protective action, the effect of Selol on free radical generation and on antioxidative potential was evaluated. Selol offered significant protection against the elevation of reactive oxidative species (ROS) evoked by SNP. Moreover, this compound restored glutathione homeostasis by ameliorating the SNP-evoked disturbance of GSH/GSSG ratio. The protective effect exerted by Selol was associated with the prevention of SNP-mediated down-regulation of antioxidative enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR). Finally, GPx inhibition significantly abolished the cytoprotective effect of Selol. In conclusion, these results suggest that Selol effectively protected PC12 cells against SNP-induced oxidative damage and death by adjusting free radical levels and antioxidant system, and suppressing apoptosis. Selol could be successfully used in the treatments of diseases that involve oxidative stress and resulting apoptosis.  相似文献   

13.
We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2 -generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium.  相似文献   

14.
The lesions simulating disease (lsd) mutants of Arabidopsis spontaneously develop hypersensitive-response-like lesions in the absence of pathogens. To address the function of the redox regulator glutathione in disease resistance, we examined the relationship between endogenous glutathione and PR-1 accumulation using one of these mutants, lsd1, as a disease resistance model. Lesion formation on lsd1 was suppressed by weak light and initiated by the subsequent transition to normal light. The application of buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis, suppressed conditionally induced runaway cell death and expression of the PR-1 gene, suggesting that glutathione regulates the conditional cell death and PR-1 gene expression. The application of reduced (GSH) or oxidized (GSSG) glutathione to lsd1 upregulated the level of total glutathione ([GSH]+[GSSG]) accompanied by hastened accumulation of PR-1, and the basal level of total glutathione in lsd1 was higher than that in wild-type plants. The glutathione redox state defined as [GSH]/([GSH]+[GSSG]) decreased following the conditional transition, but the suppression of this decrease by the application of GSH did not inhibit the accumulation of PR-1. Taken together, conditional PR-1 accumulation in lsd1 is regulated not by the redox state but by the endogenous level of glutathione.  相似文献   

15.
16.
Apoptosis (programmed cell death) is a genetically programmed active cell death process for maintaining homeostasis under physiological conditions and for responding to various stimuli. Many human diseases have been associated with either increased apoptosis (such as AIDS and neurodegenerative disorders) or decreased apoptosis (such as cancer and autoimmune disorders). In an attempt to understand apoptosis signaling pathway and genes associated with apoptosis, we established two cell model systems on which apoptosis is induced either by DNA damaging agent, etoposide or by redox agent, 1,10-phenanthroline (OP). DNA chip profiling or mRNA differential display (DD) was utilized to identify genes responsive to apoptosis induced by these two agents. In etoposide model with chip hybridization, we defined signaling pathways that mediate apoptosis in p53 dependent manner (through activation of p53 target genes such as Waf-1/p21, PCNA, GPX, S100A2 and PTGF-beta) as well as in p53-independent manner (through activation of ODC and TGF-beta receptor, among others). In OP model with DD screening, we cloned and characterized two genes: glutathione synthetase, encoding an enzyme involved in glutathione synthesis and Sensitive to Apoptosis Gene (SAG), a novel evolutionarily conserved gene encoding a zinc RING finger protein. Both genes appear to protect cells from apoptosis induced by redox agents. Further characterization of SAG revealed that it is a growth essential gene in yeast and belongs to a newly identified gene family that promotes protein ubiquitination and degradation. Through this activity, SAG regulates cell cycle progression and many other key biological processes. Thus, SAG could be a valid drug target for anti-cancer and anti-inflammation therapies.  相似文献   

17.
18.
Rats were rendered diabetic with streptozotocin and supplemented or not with N-acetylcysteine (NAC) and taurine (TAU). The liver was examined for the quantity of glutathione (GSH), both total and oxidised (GSSG), by HPLC assay. Moreover, the liver expression of gamma-glutamyl-cysteine synthetase, cysteine dioxygenase and heme oxygenase 1 was evaluated. Streptozotocin-diabetic rats showed decreased levels of liver glutathione (GSH); dietary supplementation with the antioxidants NAC and TAU failed to restore liver GSH to the level of control rats. Gamma-glutamyl-cysteine synthetase expression was not reduced in the diabetic rats, so the low hepatic GSH level in the supplemented diabetic rats cannot be ascribed to decreased expression of the biosynthetic key enzyme. Moreover, the diabetic rats showed no evidence of increased expression of cysteine dioxygenase, which could have indicated that NAC-derived cysteine was consumed in metabolic pathways different from GSH synthesis. However, NAC+TAU treatment provided partial protection from glutathione oxidation in the liver of diabetic rats; moreover, the antioxidant treatment reduced the hepatic overexpression of heme oxygenase 1 (HO-1) mRNA which was detected in the diabetic rats. In conclusion, although NAC was not able to restore liver GSH levels, the antioxidant treatment restrained GSH oxidation and HO-1 overexpression, which are markers of cellular oxidative stress: diabetic rats probably exploit NAC as an antioxidant itself rather than as a GSH precursor.  相似文献   

19.
This study investigated the effects of exogenous hydrogen sulfide (H2S) on the redox states of ascorbate (AsA) and glutathione (GSH) in maize leaves under NaCl (100 mM) stress. Salt stress increased the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), Γ-glutamylcysteine synthetase (Γ-ECS), and L-galactono-1,4-lactone dehydrogenase (GalLDH), malondialdehyde content and electrolyte leakage, and reduced the ratios of reduced and oxidised forms of AsA (AsA/DHA) and GSH (GSH/GSSG) compared with control. Pretreatment with NaHS (H2S donor) further enhanced the activities of the above enzymes except MDHAR and ameliorated the decrease in the ratios of AsA/DHA and GSH/GSSG compared with the salt stress alone. Pretreatment with NaHS significantly reduced the malondialdehyde content and electrolyte leakage induced by the salt stress. Pretreatment with NaHS alone did not affect any of the above mentioned parameters compared with the control. Our results suggest that exogenous H2S could maintain the redox states of ascorbate and glutathione by up-regulating the ascorbate and glutathione metabolism and thus play an important role for acquisition of salt stress tolerance in maize.  相似文献   

20.
Growth factor deprivation-induced apoptosis has been shown in various cell systems and is recognized as one of the standard models for the study of programmed cell death. The mechanism of induction of apoptosis by serum deprivation is still not clear. The objective of the present study was to investigate if serum-deprivation causes oxidative stress, which then leads to apoptotic death. We have demonstrated that indeed, there was a significant increase in reactive oxygen species following serum deprivation of 5123tc hepatoma cells. Furthermore, treatment with anti-oxidants; melatonin or vitamin E, prevented cell death caused by serum-deprivation. We also demonstrated that there was activation of proteasome proteases and decrease in glutathione levels following serum deprivation. Interestingly, melatonin treatment blocked these changes and rescued the cells from apoptosis induced by serum-deprivation. These results indicated that oxidative stress may play a causal role in the induction of apoptosis induced by serum deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号