首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The phenylalanine ammonia-lyase (PAL) inhibitor l-alpha-aminooxy-beta-phenylpropionic acid (AOPP) was root-fed to light-exposed soybean seedlings alone or with glyphosate [N-(phosphonomethyl)glycine] to test further the hypothesis that PAL activity is involved in the mode of action of glyphosate. Extractable PAL activity was increased by 0.01 and 0.1 millimolar AOPP. AOPP reduced total soluble hydroxyphenolic compound levels and increased phenylalanine and tyrosine levels, indicating that in vivo PAL activity was inhibited by AOPP. The increase in extractable PAL caused by AOPP may be a result of decreased feedback inhibition of PAL synthesis by cinnamic acid and/or its derivatives. AOPP alone had no effect on growth (fresh weight and elongation) at either concentration, but at 0.1 millimolar it slightly alleviated growth (fresh weight) inhibition caused by 0.5 millimolar glyphosate after 4 days. Reduction of the free pool of phenylalanine by glyphosate was reversed by AOPP. These results indicate that glyphosate exerts some of its effects through reduction of aromatic amino acid pools through increases in PAL activity and that not all growth effects of glyphosate are due to reductions of aromatic amino acids.  相似文献   

2.
3.
《Plant science》1988,58(2):245-252
Treatment of detached cowpea leaves with phosphite, the active breakdown product in plant tissues of fosetyl-Al, leads to the cessation of growth of Phytophthora cryptogea within 24 h of inoculation. Pretreatment of leaves with α-aminooxyacetate (AOA), an inhibitor of the phenylpropanoid pathway, increases the size of lesions in phosphite treated leaves and induces a complete susceptibility at 5 mM. By 24 h after inoculation, phenylalanine ammonia-lyase (PAL) activity is higher in phosphite treated leaves than in untreated leaves. The effects of AOA on PAL activity are paralleled with the effects of the increase of the spread of infection. AOA treatment does not affect phosphite uptake by fungal cells and leaf tissues, while it inhibits kievitone and phaseollidin accumulation in infected treated leaves and causes a reduction in extractable PAL activity. These results suggest that cessation of fungal growth in vivo is not as a result of a direct effect of phosphite on the fungus and strongly support a role of the host defence reactions in the mode of action of phosphite.  相似文献   

4.
R. A. Dixon  T. Browne  M. Ward 《Planta》1980,150(4):279-285
The increase in extractable phenylalanine ammonia-lyase (PAL;EC 4.3.1.5.) activity induced in French bean cell suspension cultures in response to treatment with autoclaved ribonuclease A was inhibited by addition of the phenylpropanoid pathway intermediates cinnamic acid, 4-coumaric acid or ferulic acid. The effectiveness of inhibition was in the order cinnamic acid>4-coumaric acid>ferulic acid. Cinnamic acid also inhibited the PAL activity increase induced by dilution of the suspensions into an excess of fresh culture medium. Addition of low concentrations (<10-5M) of the pathway intermediates to cultures at the time of application of ribonuclease gave variable responses ranging from inhibition to 30–40% stimulation of the PAL activity measured at 8 h. Following addition of pathway intermediates to cultures 4–5 h after ribonuclease treatment, rapid increases followed by equally rapid declines in PAL activity were observed. The cinnamic acid-stimulated increase in enzyme activity was unaffected by treatment with cycloheximide at a concentration which gave complete inhibition of the ribonuclease-induced response. However, cycloheximide completely abolished the subsequent decline in enzyme activity. Treatment of induced cultures with -aminooxy--phenylpropionic acid (AOPPA) resulted in increased but delayed rates of enzyme appearance when compared to controls not treated with the phenylalanine analogue. The results are discussed in relation to current views on the regulation of enzyme levels in higher plants.Abbreviations AOPPA -aminooxy--phenylpropionic acid - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5) - AOA -aminooxyacetic acid  相似文献   

5.
In plants, chalcones are precursors for a large number of flavonoid-derived plant natural products and are converted to flavanones by chalcone isomerase or nonenzymatically. Chalcones are synthesized from tyrosine and phenylalanine via the phenylpropanoid pathway involving phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate:coenzyme A ligase (4CL), and chalcone synthase (CHS). For the purpose of production of flavanones in Escherichia coli, three sets of an artificial gene cluster which contained three genes of heterologous origins--PAL from the yeast Rhodotorula rubra, 4CL from the actinomycete Streptomyces coelicolor A3(2), and CHS from the licorice plant Glycyrrhiza echinata--were constructed. The constructions of the three sets were done as follows: (i) PAL, 4CL, and CHS were placed in that order under the control of the T7 promoter (P(T7)) and the ribosome-binding sequence (RBS) in the pET vector, where the initiation codons of 4CL and CHS were overlapped with the termination codons of the preceding genes; (ii) the three genes were transcribed by a single P(T7) in front of PAL, and each of the three contained the RBS at appropriate positions; and (iii) all three genes contained both P(T7) and the RBS. These pathways bypassed C4H, a cytochrome P-450 hydroxylase, because the bacterial 4CL enzyme ligated coenzyme A to both cinnamic acid and 4-coumaric acid. E. coli cells containing the gene clusters produced two flavanones, pinocembrin from phenylalanine and naringenin from tyrosine, in addition to their precursors, cinnamic acid and 4-coumaric acid. Of the three sets, the third gene cluster conferred on the host the highest ability to produce the flavanones. This is a new metabolic engineering technique for the production in bacteria of a variety of compounds of plant and animal origin.  相似文献   

6.
4-[3-(Trifluoromethyl) diazirinyl] cinnamic acid derivatives were synthesized to elucidate properties of phenylalanine ammonia-lyase (PAL). 2-Methoxy and 2-biotinylated alkoxy compounds have inhibitory activity on the formation of phenylalanine from cinnamic acid. Specific photolabeling of the enzyme was detected using biotinylated derivatives without the use of radioisotopes. The results indicated that the 4-[3-(trifluoromethyl) diazirinyl] skeleton will be a suitable photoreactive compound to elucidate regulation of phenylpropanoid biosynthesis.  相似文献   

7.
Phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and the C4H redox partner cytochrome p450 reductase (CPR) are important in allocating significant amounts of carbon from phenylalanine into phenylpropanoid biosynthesis in plants. It has been proposed that multienzyme complexes (MECs) containing PAL and C4H are functionally important at this entry point into phenylpropanoid metabolism. To evaluate the MEC model, two poplar PAL isoforms presumed to be involved in either flavonoid (PAL2) or in lignin biosynthesis (PAL4) were independently expressed together with C4H and CPR in Saccharomyces cerevisiae, creating two yeast strains expressing either PAL2, C4H and CPR or PAL4, C4H and CPR. When [(3)H]Phe was fed, the majority of metabolized [(3)H]Phe was incorporated into p-[(3)H]coumarate, and Phe metabolism was highly reduced by inhibiting C4H activity. PAL alone expressers metabolized very little phenylalanine into cinnamic acid. To test for intermediate channeling between PAL and C4H, we fed [(3)H]Phe and [(14)C]cinnamate simultaneously to the triple expressers, but found no evidence for channeling of the endogenously synthesized [(3)H]cinnamate into p-coumarate. Therefore, efficient carbon flux from Phe to p-coumarate via reactions catalyzed by PAL and C4H does not appear to require channeling through a MEC in yeast, and instead biochemical coupling of PAL and C4H is sufficient to drive carbon flux into the phenylpropanoid pathway. This may be the primary mechanism by which carbon allocation into phenylpropanoid metabolism is controlled in plants.  相似文献   

8.
Cell cultures of Taxus canadensis were subjected to exogenously applied ethylene (ET) hormone and methyl jasmonate (MJ) elicitation in factorial design experiments. Levels of extracellular taxanes, including paclitaxel, were used with principal component analysis for fault detection and real-coded genetic algorithms for parameter optimization to construct a culture sub-population induction model. Culture sub-populations were identified by the model as (1) uninduced, (2) induced to unilateral function of the ET-signaling pathway, and (3) induced to cooperation between jasmonic acid (JA)- and ET-signaling pathways. Comprehensive model results suggested greater rates of cellular induction (resulting in exogenous taxane production) by ET gas as opposed to MJ elicitation. However, cellular induction of ET-signaling pathway genes increased the rate of induction of JA-signaling pathway genes by orders of magnitude. In addition, model results showed that induction of genes leading to extracellular production of the simple taxane 10-deacetylbaccatin III was regulated by the unilateral ET-signaling pathway. However, it was suggested that further processing of this simple taxane to complex taxane structures, such as paclitaxel, required further gene induction by the JA-signaling pathway. Thus, production rate constants of exogenous complex taxanes were predicted to be an order of magnitude lower than that for the simple taxane 10-deacetylbaccatin III. The fraction of the cell culture sub-population displaying unilateral ET-signaling pathway gene induction was found inversely proportional to levels of MJ elicitation. When coupled with simple non-growth product models, levels of all extracellular taxanes were effectively predicted using the culture sub-population induction model.  相似文献   

9.
Summary The addition of cell extracts and cultures filtrate of Pencillium minioluteum, Botrytis cinerea, Verticillium dahliae, and Gilocladium deliqucescens on the tenth day after transferring Taxus sp. (RO1-M28) cell suspensions into an induction medium, further improved the production of Taxol and total taxanes. Arachidonic acid (1mg/L) addition at the time of inoculation increased Taxol production by 150%. Oxidative stress induction and copper sulphate or sodium orthovanadate addition had no effect on Taxol production. Three categories of elicitors; those specifically stimulating Taxol production, those specifically stimulating the producion of other taxanes, and those stimulating taxane production uniformly, could be identified. The biosynthetic site of action of these elicitors is currently not known.
  相似文献   

10.
Thirty-five derivatives of cinnamic acid and related compounds were tested for inhibition against phenylalanine ammonia-lyase (PAL) derived from sweet potato, pea and yeast. Caffeic and gallic acids showed inhibition against PAL originating from higher plants, but not against yeast PAL. In contrast, yeast PAL was specifically inhibited by p-hydroxycinnamic and p-hydroxybenzoic acids. The results suggest that caffeic and gallic acids may act as regulatory substances in phenylpropanoid metabolism in higher plants. Inhibition experiments with synthetic cinnamic acid derivatives have revealed that the presence of a hydrophobic aromatic ring, α,β-double bond and carboxyl group is essential for inhibitory activity. 2-Naphthoic acid which fulfills these structural requirements showed a strong inhibition. The size and shape of the active site is discussed from structure-activity relationships of cinnamic acid derivatives. o-Chlorocinnamic acid, one of the strongest inhibitors found in this study showed an inhibitory effect on the growth of the roots of rice seedlings.  相似文献   

11.
Pharmacological evidence implicates trans-cinnamic acid as a feedback modulator of the expression and enzymatic activity of the first enzyme in the phenylpropanoid pathway, L-phenylalanine ammonia-lyase (PAL). To test this hypothesis independently of methods that utilize potentially non-specific inhibitors, we generated transgenic tobacco lines with altered activity levels of the second enzyme of the pathway, cinnamic acid 4-hydroxylase (C4H), by sense or antisense expression of an alfalfa C4H cDNA. PAL activity and levels of phenylpropanoid compounds were reduced in leaves and stems of plants in which C4H activity had been genetically down-regulated. However, C4H activity was not reduced in plants in which PAL activity had been down-regulated by gene silencing. In crosses between a tobacco line over-expressing PAL from a bean PAL transgene and a C4H antisense line, progeny populations harboring both the bean PAL sense and C4H antisense transgenes had significantly lower extractable PAL activity than progeny populations harboring the PAL transgene alone. Our data provide genetic evidence for a feedback loop at the entry point into the phenylpropanoid pathway that had previously been inferred from potentially artifactual pharmacological experiments.  相似文献   

12.
U. Margna 《Phytochemistry》1977,16(4):419-426
The problem of the intracellular mechanisms responsible for the control of accumulation of phenylalanine-derived polyphenols in plants is considered. Possible control functions of phenylalanine ammonia lyase (PAL) in this process are critically discussed and experimental facts are surveyed providing evidence that substrate (phenylalanine) supply rather than enzymic (PAL) activity is the most likely limiting factor in controlling phenylpropanoid accumulation. These facts involve: frequent lack of consistent correlation between changes in the level of PAL and accumulation rate of phenylpropanoids, high deaminating capacity of PAL markedly exceeding the level required to sustain the formation of polyphenols in most tissues, stimulatory action of phenylalanine on polyphenol accumulation when administered externally, very low and constant levels of free endogenous phenylalanine in plant tissues, and the existence of balanced relationship between protein metabolism and the formation of flavonoids and cinnamic acid derivatives in plants.  相似文献   

13.
Loblolly pine (Pinus taeda L.) cell suspension cultures secrete monolignols when placed in 8% sucrose/20 mM KI solution, and these were used to identify phenylpropanoid pathway flux-modulating steps. When cells were provided with increasing amounts of either phenylalanine (Phe) or cinnamic acid, cellular concentrations of immediate downstream products (cinnamic and p-coumaric acids, respectively) increased, whereas caffeic and ferulic acid pool sizes were essentially unaffected. Increasing Phe concentrations resulted in increased amounts of p-coumaryl alcohol relative to coniferyl alcohol. However, exogenously supplied cinnamic, p-coumaric, caffeic, and ferulic acids resulted only in increases in their intercellular concentrations, but not that of downstream cinnamyl aldehydes and monolignols. Supplying p-coumaryl and coniferyl aldehydes up to 40, 000-320,000-fold above the detection limits resulted in rapid, quantitative conversion into the monolignols. Only at nonphysiological concentrations was transient accumulation of intracellular aldehydes observed. These results indicate that cinnamic and p-coumaric acid hydroxylations assume important regulatory positions in phenylpropanoid metabolism, whereas cinnamyl aldehyde reduction does not serve as a control point.  相似文献   

14.
Cell suspension cultures of chili pepper ( Capsicum annuum L. cv. Tampiqueño 74) displaying differences in their resistance to p -fluorophenylalanine (PFP) and in their contents of capsaicin (the compound which is responsible for the hot taste of chili pepper fruits) were characterized in relation to the activity of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), the levels of free l -phenylalanine, phenolics and the phenylpropanoid acids involved in capsaicin biosynthesis. A nonselected cell line, a sensitive line (CA-02), a moderately resistant cell line (CA-29) and two resistant cell lines (CA-04 and CA-16) were studied. Higher PAL activities and higher levels of phenylalanine and phenolics were found in the PFP-resistant cells even after a minimum of 9 subcultures (15 days each) in the absence of the analog, indicating that the selected trait was stable. PFP-resistant chili pepper cells accumulated higher amounts of capsaicin precursors (cinnamic, caffeic and ferulic acids) than either the nonselected cells or the sensitive cell line. p -Coumaric acid was not detected at significant levels in any of the cell cultures. Overall, accumulation of free phenyl-alanine correlated well with PAL activity, phenolics, phenylpropanoids and capsaicin levels, suggesting an active flow through the phenylpropanoid pathway in PFP-resistant cells of chili pepper.  相似文献   

15.
Aminooxyacetate (AOA), an inhibitor of phenylalanine transamination and deamination in vitro, inhibits the light-induced formation of chlorogenic acid, leucoanthocyanin, rutin and anthocyanin (cyanidin glycosides) in buckwheat hypocotyls. Anthocyanin production is inhibited 87 ± 4%, when excised hypocotyls are incubated in 0.5 mM AOA in Petri dishes. AOA is also effective when taken up through the roots or sprayed onto seedlings. In the presence of biosynthetic precursors of cyanidin (l-phenylalanine, trans-cinnamic acid, p-coumaric acid, naringenin, eriodictyol, dihydrokaempferol. and dihydroquercetin) the inhibition of anthocyanin formation caused by AOA is completely or partially reversed. The general applicability of a complementation technique involving AOA or a similar inhibitor of phenylpropane synthesis is proposed to investigate the biosynthesis of natural products derived from cinnamic acid.  相似文献   

16.
Evelyn A. Havir 《Planta》1981,152(2):124-130
Suspension-cultured cells of soybean (Glycine max (L.) Merr. cv. Kanrich) produce large amounts of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), the first enzyme of phenylpropanoid metabolism, during growth. 2-Aminooxyacetic acid (AOA) and l-2-aminooxy-3-phenylpropionic acid (l-AOPP) inhibit the enzyme competitively in vitro and have been used for in vivo studies. The amount of extractable enzyme in the cells and their utilization of NO 3 and NH 3 + are reduced upon the addition of AOA. When AOA was added at various times during growth, the appearance of additional enzyme activity was prevented but enzyme already formed was not inhibited. No evidence was obtained for the presence of an inhibitor in the extracts and AOA inhibition in vitro was readily reversible. It is conculded that AOA acts to inhibit the formation of PAL in suspension-cultured soy bean cells. In vitro inhibition of soybean PAL by l-AOPP could not be reversed; in contrast, the inhibition of maize (Zea mays L.) PAL was readily reversible. Added l-AOPP, which was rapidly taken up by the soybean cells, prevented the large increase in enzyme activity. Although PAL activity was blocked in the cultures, no appreciable increase in phenylalanine content could be detected in cell extracts. The response of soybean cell suspensions to l-AOPP addition thus differs from that of other tissues which in presence of l-AOPP show an increase in PAL activity and an accumulation of phenylalanine.Abbreviations AOA 2-aminooxyacetic acid - l-AOPP l-2-aminoxy-3-phenylpropionic acid - PAL l-phenylalanine ammonialyase (EC4.3.1.5)  相似文献   

17.
Pinoresinol diglucoside (PDG) and pinoresinol (Pin) are normally produced by plant cells via the phenylpropanoid pathway. This study reveals the existence of a related pathway in Phomopsis sp. XP-8, a PDG-producing fungal strain isolated from the bark of the Tu-chung tree (Eucommiaulmoides Oliv.). After addition of 0.15 g/L glucose to Phomopsis sp. XP-8, PDG and Pin formed when phenylalanine, tyrosine, leucine, cinnamic acid, and p-coumaric acid were used as the substrates respectively. No PDG formed in the absence of glucose, but Pin was detected after addition of all these substrates except leucine. In all systems in the presence of glucose, production of PDG and/or Pin and the accumulation of phenylalanine, cinnamic acid, or p-coumaric acid correlated directly with added substrate in a time- and substrate concentration- dependent manner. After analysis of products produced after addition of each substrate, the mass flow sequence for PDG and Pin biosynthesis was defined as: glucose to phenylalanine, phenylalanine to cinnamic acid, then to p-coumaric acid, and finally to Pin or PDG. During the bioconversion, the activities of four key enzymes in the phenylpropanoid pathway were also determined and correlated with accumulation of their corresponding products. PDG production by Phomopsis sp. exhibits greater efficiency and cost effectiveness than the currently-used plant-based system and will pave the way for large scale production of PDG and/or Pin for medical applications.  相似文献   

18.
19.
20.
Feeding experiments using 13C labelled precursors and NMR spectroscopic studies revealed general biosynthetic incorporation of phenylalanine and variable incorporation of cinnamic acid, p-coumaric acid, caffeic acid and ferulic acid into phenylphenalenones in root cultures of Anigozanthos preissii. Evidence was obtained for parallel pathways of phenylphenalenone biosynthesis, with respect to the left phenylpropanoid unit, and a sequence involving utilisation of p-coumaric acid with late generation of an intermediate catechol moiety in the right phenylpropanoid unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号