首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kayar, Susan R., and Erich C. Parker. Oxygen pulse inguinea pigs in hyperbaric helium and hydrogen. J. Appl. Physiol. 82(3): 988-997, 1997.We analyzedO2 pulse, the total volume of O2 consumed per heart beat, inguinea pigs at pressures from 10 to 60 atmospheres. Animals were placedin a hyperbaric chamber and breathed 2%O2 in either helium (heliox) orhydrogen (hydrox). Oxygen consumption rate(O2) was measured by gaschromatographic analysis. Core temperature and heart rate were measuredby using surgically implanted radiotelemeters. TheO2 was modulated over afourfold range by varying chamber temperature from 25 to 36°C. There was a direct correlation betweenO2 and heartrate, which was significantly different for animals in heliox vs.hydrox (P = 0.003). By usingmultivariate regression analysis, we identified variables that weresignificant to O2 pulse: bodysurface area, chamber temperature, core temperature, and pressure.After normalizing for all nonpressure variables, the residualO2 pulse was found to decreasesignificantly (P = 0.02) with pressurefor animals in heliox but did not decrease significantly(P = 0.38) with pressure for animalsin hydrox over the range of pressures studied. This amounted to aroughly 25% lower O2 pulse fornormothermic animals in 60 atmospheres heliox vs. hydrox. These resultssuggest that reduction of cardiovascular efficiency in a hyperbaricenvironment can be mitigated by the choice of breathing gas.

  相似文献   

3.
4.
5.
Rectal temperatures of salicylate-treated and untreated rats were observed in 21-23 degrees C air at 1, 3, 6, and 8 ATA, in 21-23 degrees C helium at 1 and 6 ATA, and in 1 ATA thermal neutral air (28 degrees C). Significant dose-related temperature decreases occurred in 21-23 degrees C 1 ATA air with 180 and 300 mg/kg of salicylate; 60 mg/kg had no effect. However, in thermal neutral air, 300 mg/kg significantly elevated temperatures. Hyperbaric air and helium had temperature-lowering effects which were correlated with thermal properties of these environments, and in them the hypothermic effects of salicylate were similar to those in 1 ATA air, the total temperature decreases being the sum of the salicylate hypothermia and that caused by the hyperbaric air or helium. These additive temperature effects are unlike previously reported results in which the temperature lowering effects of 5 degrees C cold exposure and salicylate together were greater than the sum of the two individual effects.  相似文献   

6.
7.
8.
9.
Summary Robber flies (Diptera: Asilidae) were studied in Panama from May through August. Of the 16 species examined, 5 perched and foraged in the sun and 11 perched and foraged in the shade. Thoracic body temperatures of light-seeking flies ranged from 35.2–40.6°C during foraging. Light-seeking flies regulated body temperature behaviorally by microhabitat selection and postural adjustments, and physiologically by transferring warmed haemolymph from the thorax to the cooler abdomen. Thoracic temperatures of shade-seeking flies passively followed ambient temperature in the shade and these flies did not thermoregulate. None of these robber flies warmed endothermically in the absence of flight. Resting oxygen consumption ( ) of both groups scaled with body mass to the 0.77 power. The factorial increment in resulting from hovering flight ranged from 12 to 56. The increased markedly with body temperature in light-seeking flies and probably explains the greater foraging effort observed in these species. Wing loading of all 16 species of robber flies scaled with body mass to the 0.39 power. Large light-seeking flies had heavier wing loading than large shade-seeking flies. The differences in body temperature and wing loading between light-seeking and shade-seeking robber flies may be related to differences in flight speed and maneuverability during foraging.  相似文献   

10.
The relationship between pressure and temperature as it affects microbial growth and metabolism has been examined only for a limited number of bacterial species. Because many newly-discovered, extremely thermophilic bacteria have been isolated from pressurized environments, this relationship merits closer scrutiny. In this study, the extremely thermophilic bacterium, Sulfolobus acidocaldarius, was cultured successfully in a hyperbaric chamber containing helium and air enriched with 5% carbon dioxide. Over a pressure range of approximately 1-120 bar and a temperature range of 67-80 degrees C, growth was achieved in a heterotrophic medium with the air mixture at partial pressures up to 3.5 bar. Helium was used to obtain the final, desired incubation pressure. No significant growth was noted above 80 degrees C over the same range of hyperbaric pressures, or at 70 degrees C when pressure was applied hydrostatically. Growth experiments conducted under hyperbaric conditions may provide a means to study these bacteria under simulated in situ conditions and simultaneously avoid the complications associated with hydrostatic experiments. Results indicate that hyperbaric helium bioreactors will be important in the study of extremely thermophilic bacteria that are isolated from pressurized environments.  相似文献   

11.
Helox (79% helium and 21% oxygen) has often been used for thermobiological studies, primarily because helium is thought to be metabolically inert and to produce no adverse effects other than increasing heat loss. However, these assumptions have been questioned. As basal metabolic rate (BMR) represents maintenance energy requirements for vital body functions, potential physiological effects of helox should be reflected in changes of BMR. In this study, sugar gliders were subjected to both air and helox atmospheres over a wide range of T(a)'s, including the thermoneutral zone (TNZ), to determine (1) whether helox has any influence other than on heat loss and (2) the maximum heat production (HP(max)) and thermal limits of this species. Although thermal conductance in the TNZ increased in helox, BMR was similar in air and helox (0.55+/-0.07 and 0.57+/-0.06 mL g(-1) h(-1), respectively). The TNZ in helox, however, was shifted upwards by about 3 degrees C. Below the TNZ, sugar gliders were able to withstand an effective temperature of -24.7+/-7.3 degrees C with an HP(max) of 3.14+/-0.36 mL g(-1) h(-1). The low effective temperature tolerated by sugar gliders shows that they are competent thermoregulators despite their apparent lack of functional brown fat. Similarities of BMRs in air and helox suggest that the effect of helox is restricted to an increase of heat loss, and, consequently, helox represents a useful tool for thermal physiologists. Moreover, the lack of increase of BMR in helox despite an increase in thermal conductance of sugar gliders suggests that BMR is not a function of body surface.  相似文献   

12.
13.
Diving isknown to induce a change in the amplitude of the T wave(ATw) ofelectrocardiograms, but it is unknown whether this is linked to achange in cardiovascular performance. We analyzed ATw in guinea pigs at 10-60atm and 25-36°C, breathing 2%O2 in either helium (heliox;n = 10) or hydrogen (hydrox;n = 9) for 1 h at each pressure. Coretemperature and electrocardiograms were detected by using implantedradiotelemeters. O2 consumption rate was measured by using gas chromatography. In a previous study (S. R. Kayar and E. C. Parker. J. Appl.Physiol. 82: 988-997, 1997), we analyzed theO2 pulse, i.e., theO2 consumption rate per heartbeat, in the same animals. By multivariate regression analysis, weidentified variables that were significant toO2 pulse: body surface area,chamber temperature, core temperature, and pressure. In this study,inclusion of ATw made asignificantly better model with fewer variables. After normalizing forchamber temperature and pressure, theO2 pulse increased with increasing ATw in heliox(P = 0.001) but with decreasingATw in hydrox(P < 0.001). ThusATw is associated with thedifferences in O2 pulse foranimals breathing heliox vs. hydrox.

  相似文献   

14.
15.
16.
17.
18.
In loosely-restrained adult conscious rats exposed to stepwise changes in ambient temperature (T(a)) from 25 to 5 degrees C or from 20 to 35 degrees C, we have recorded body and tail temperatures, metabolic rate (VO(2)), shivering and ventilation (V). It was found that VO(2) and V vary with T(a) and show a nadir for a T(a) of 30 degrees C whereas shivering starts at 20 degrees C and increases progressively with cold exposure. T(tail) follows changes in T(a) whereas T(body) decreases slightly in cold and increases markedly in warm exposure. These results suggest that the control of T(body) interacts with the control of breathing in order to increase VO(2) during cold exposure and to facilitate evaporative respiratory heat dissipation during warm exposure.  相似文献   

19.
Body composition and skin temperature variation   总被引:1,自引:0,他引:1  
Temperature variations near four common torso skin temperature sites were measured on 17 lightly clad subjects exposed to ambient temperatures of 28, 23, and 18 degrees C. Although variations in skin temperature exceeding 7 degrees C over a distance of 5 cm were observed on individuals, the mean magnitude of these variations was 2-3 degrees C under the coolest condition and less at the warmer temperatures. There was no correlation between the temperature variation and skinfold thickness at a site or with estimations of whole body fat content. These findings imply that errors in mean skin temperature measurement could arise from probe mislocation and/or subcutaneous fat distribution and that the problem becomes more acute with increasing cold stress. However, the magnitudes of these errors cannot be easily predicted from common anthropometric measurements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号