首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein L-isoaspartyl methyltransferase (PIMT) transfers the methyl group of S-adenosyl-L-methionine to free alpha-carboxyl groups of atypical L-isoaspartyl residues in proteins. The complete primary structure of the type I isoform of bovine brain PIMT was determined by sequence analysis of peptides generated by endoprotease Lys-C, trypsin, cyanogen bromide, and endoprotease Asp-N digests. The correct composition of every peptide was verified by fast atom bombardment mass spectrometry. The efficiency of sequencing by tandem mass spectrometry was examined for several peptides by comparing its speed and accuracy with automated Edman degradation. Tandem mass spectrometry was used to determine the structure of the NH2-terminal blocked peptide derived from a hydroxylamine cleavage. PIMT is 226 residues with Mr = 24,500 and contains acetyl alanine as the amino-terminal residue. The partial sequence (141 residues from 8 tryptic peptides) of a homologous human red cell PIMT (Gilbert, J. M., Fowler, A., Bleibaum, J., and Clarke, S. (1988) Biochemistry 27, 5227-5233) shows a 97% identity with the corresponding peptides of the bovine brain enzyme. The complete brain enzyme sequence reported here bears no significant homology to any other known class of methyltransferase including those which methylate the side chain gamma-carboxyl group of receptor proteins involved in bacterial chemotaxis.  相似文献   

2.
Three peptides containing 6-pyridoxyllysine have been isolated from the tryptic digest of the allosteric fructose-1,6-bisphosphate-dependent pyruvate kinase from Escherichia coli, which had been almost completely inactivated with pyridoxal 5'-phosphate. The labelled peptides have been sequenced. The comparison of their sequences with the primary structure of the cat muscle pyruvate kinase allowed to state that peptide I fits the region spanning residues 423-438 (53% identity), peptide II corresponds to residues 442-457 (44% identity) and peptide III encompasses residues 342-368 (70% identity). These findings are discussed in connection with our previous results on the involvement of the three peptides in the catalytic and regulatory properties of the enzyme (Valentini, G., Speranza, M.L., Iadarola, P., Ferri, G. & Malcovati, M. (1988) Biol. Chem. Hoppe-Seyler 369, 1219-1226) and in connection with their location in the three-dimensional structure of the cat muscle pyruvate kinase (Muirhead, H., Clayden, D.A., Lorimer, C.G., Fothergill-Gilmore, L.A., Schiltz, E. & Schmitt, W. (1986) EMBO J. 5, 475-481).  相似文献   

3.
1. beta-D-Galactopyranosylmethyl-p-nitrophenyltriazene is an active-site-directed irreversible inhibitor of Mg2+-bound and Mg2+-free lacZ beta-galactosidase from Escherichia coli. 2. The Mg2+-enzyme binds the inhibitor more tightly but the complex then decomposes less rapidly than is the case with Mg2+-free enzyme. 3. Loss of enzyme activity is a linear function of the fraction of enzyme protomers to which are attached beta-D-galactopranosyl[14C]methyl residues: complete inactivation of fully active enzyme results in incorporation of 0.91 equivalent of carbohydrate label per enzyme protomer. 4. When the beta-galactopyranosylmethyl cation is generated in the active site of Mg2+-enzyme, it is captured essentially completely by the protein, but in the active site of Mg2+-free enzyme it is only captured with an efficiency of 25%. 5. Labelled enzyme was carboxymethylated and digested with trypsin; acidic hydrolysis of the isolated tryptic peptide, and field-desorption mass spectrometry of the isolated radioactive derivative, showed it to be 2,5-dioxo-3[2-(beta-D-galactopyranosylmethylthio)ethyl]-1,6-trimethylenepiperazine. 6. This is considered to have arisen from labelling of the sulphur atom of a methionine residue adjacent to a proline residue. 7. The complete amino acid sequence of the molecule [Fowler & Zabin (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 1507-1510] enables the labelled methionine residue to be identified as either Met-421 or Met-500. 8. Sequence data [Fowler, Zabin, Sinnott & Smith (1978) J. Biol. Chem. in the press] show the site of attack to be Met-500.  相似文献   

4.
F Celada  I Zabin 《Biochemistry》1979,18(3):404-406
alpha Complementation in beta-galactosidase is the restoration of enzyme activity by addition of the alpha donor CNBr2, from amino acid residues 3--92 of the polypeptide, to inactive M15 protein from the lacZ deletion mutant strain M15. M15 protein lacks residues 11--41 and is a dimer; the active complex, like native beta-galactosidase, is tetrameric [Langley, K. E., & Zabin, I. (1976) Biochemistry 15, 4866--4875]. A dimer--dimer binding region in beta-galactosidase has been identified by proteolytic and immunologic studies of alpha-complementation. Proteolytic experiments were carried out with trypsin. Treatment of native beta-galactosidase with trypsin, followed by reaction of the mixture with cyanogen bromide, yields intact CNBr2 as measured by its ability to complement M15 protein. Active CNBr2 is not obtained when urea-denatured beta-galactosidase is treated in the same way. Therefore the segment corresponding to CNBr2 is apparently buried within the folded protein. Immunologic experiments were carried out with antibodies against CNBr2, tryptic peptide T8 (residues 60--140), and CNBr3 (residues 93--187). Anti-CNBr2 and anti-T8 bind to M15 protein but not to beta-galactosidase, indicating that this area is exposed in the dimer. Anti CNBr2, but not anti-T8 or anti-CNBr3, inhibits the formation of alpha-complemented enzyme. These results indicate that an early part of the sequence, within the segment corresponding to CNBr2, is involved in dimer--dimer interaction.  相似文献   

5.
E Diaz  D L Anton 《Biochemistry》1991,30(16):4078-4081
S-Adenosylmethionine decarboxylase from Escherichia coli is a member of a small class of enzymes that uses a pyruvoyl prosthetic group. The pyruvoyl group is proposed to form a Schiff base with the substrate and then act as an electron sink facilitating decarboxylation. We have previously shown that once every 6000-7000 turnovers the enzyme undergoes an inactivation that results in a transaminated pyruvoyl group and the formation of an acrolein-like species from the methionine moiety. The acrolein then covalently alkylates the enzyme [Anton, D. L., & Kutny, R. (1987) Biochemistry 26, 6444]. After reduction of the alkylated enzyme with NaBH4, a tryptic peptide with the sequence Ala-Asp-Ile-Glu-Val-Ser-Thr-[S-(3-hydroxypropyl)Cys]-Gly-Val-Ile-Ser-Pro - Leu-Lys was isolated. This corresponds to acrolein alkylation of a cysteine residue in the second tryptic peptide from the NH2 terminal of the alpha-subunit [Anton, D. L., & Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822]. The modified residue derived is from Cys-140 of the proenzyme [Tabor, C. W., & Tabor, H. (1987) J. Biol. Chem. 262, 16037-16040] and lies in the only sequence conserved between rat liver and E. coli S-adenosylmethionine decarboxylase [Pajunen et al. (1988) J. Biol. Chem. 263, 17040-17049]. We suggest that the alkylated Cys residue could have a role in the catalytic mechanism.  相似文献   

6.
The complete amino acid sequence of carboxamidomethylated anthranilate synthetase component II (AS II) from Pseudomonas putida has been determined by analysis of cyanogen bromide fragments, tryptic peptides from the citraconylated protein, and by analysis of subdigests of these peptides. AS II is a single polypeptide chain of 197 residues having a calculated molecular weight of 21,684. Previous studies (Goto, Y., Keim, P. S., Zalkin, H., and Heinrikson, R. L. (1976) J. Biol. Chem, 251, 941-949) identified a cysteine residue required for the formation of an acyl-enzyme intermediate. The protein has 3 cysteine residues at positions 54, 79, and 140. Cysteine-79 was alkylated selectively by iodoacetamide and by the glutamine affinity analogue L-2-amino-4-oxo-5-chloropentanoic acid. Based on this evidence cysteine-79 is the active site residue involved in formation of the acyl-enzyme intermediate. Comparison of the P. putida AS II sequence with that of the NH2-terminal 60 residues of the enzyme from Escherichia coli shows 38% sequence identity.  相似文献   

7.
Oxidized ferredoxin:NADP+ oxidoreductase (FNR) was slowly and irreversibly inactivated by N-ethylmaleimide. Complete protection against inactivation was afforded by saturating concentrations of NADP+. In the presence of NADPH, a rapid inhibition of the enzyme ensued; however, this inhibition was found to be reversible. In the tryptic map of the flavoprotein, modified with N-ethyl[2,3-14C]maleimide in oxidizing conditions, a unique radioactive peptide was found. Its sequence comprised residues 110-117 of the enzyme: Lys116 was shown to be the residue alkylated by N-ethylmaleimide. It is noteworthy that the same residue of FNR was found to be modified by 5-dimethylaminoaphthalene-1-sulfonyl(dansyl) chloride at the putative NADP(H)-binding site [Cidaria, D., Biondi, P. A., Zanetti, G. & Ronchi, S. (1985) Eur. J. Biochem. 146, 295-299]. Furthermore, the data reported here demonstrate that the sulfhydryl groups of FNR are not involved in enzyme inactivation by N-ethylmaleimide.  相似文献   

8.
The primary structure of rat liver xanthine dehydrogenase (EC 1.1.1.204) was determined by sequence analysis of cDNA and purified enzyme. The enzyme consists of 1,319 amino acid residues with a calculated molecular mass of 145,034 Da, including initiation methionine, and is homologous to the previously reported Drosophila melanogaster enzyme (Lee, C. S., Curtis, D., McCarron, M., Love, C., Gray, M., Bender, W., and Chovnick, A. (1987) Genetics 116, 55-66; Keith, T. P., Riley, M. A., Kreitman, M., Lewontin, R. C., Curtis, D., and Chambers, G. (1987) Genetics 116, 67-73) with an identity of 52%. The enzyme exists originally as the NAD-dependent type in a freshly prepared sample. When the purified NAD-dependent type enzyme was digested with trypsin, it cleaved into three fragments with molecular masses of 20, 40, and 85 kDa and was irreversibly converted to the O2-dependent type. Comparison of the amino-terminal sequences of the three peptide fragments with the cDNA-deduced sequence reveals that the 20-, 40-, and 85-kDa peptide fragments correspond residues to 1-184, 185-539, and 540-1319 of the enzyme, respectively. Comparison of the 5'-p-fluorosulfonylbenzoyladenosine-labeled peptide sequence of the chicken enzyme (Nishino, T., and Nishino, T. (1989) J. Biol. Chem. 264, 5468-5473) reveals that the NAD binding site is associated with the 40-kDa fragment portion of the enzyme. Hydropathy analysis around the cysteine residues suggests that the 2Fe/2S sites are associated with the 20-kDa fragment portion of the enzyme.  相似文献   

9.
Detergent-solubilized NADPH-cytochrome P-450 reductase was purified from porcine hepatic microsomes and compared to the rabbit enzyme isolated under identical conditions. The porcine enzyme had an equivalent specific activity toward cytochrome c compared to the rabbit enzyme. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the porcine enzyme exhibited a major band at Mr = 80,000 and two additional bands at Mr = 20,000 and 60,000. The 20-kDa fragment was shown to be the COOH-terminal portion of the protein which contains a hydrophobic sequence of 28 residues homologous to the pyrophosphate-binding portion of the FAD-binding protein p-hydroxybenzoate hydroxylase. The 60-kDa fragment corresponded to the NH2-terminal portion of the protein since this peptide and the intact protein have blocked NH2 terminal. The trypsin-solubilized porcine enzyme has an NH2-terminal sequence which is homologous to the equivalent trypsin-solubilized enzymes from rat and rabbit (80% sequence homology). Eight cysteine-containing peptides were isolated from a tryptic digest of the S-carboxymethylated pig enzyme. Significant sequence homology was not found between these peptides and other flavoproteins, except for one peptide (Glu-Val-Gly-Glu-Thr-Leu-Leu-Tyr-Tyr-Gly-Cys-Arg) which exhibited partial homology with the known NADPH-binding site of glutathione reductase. When the NADPH-protected enzyme was first S-alkylated with unlabeled iodoacetate, NADPH depleted, and further alkylated with 14C-labeled iodoacetate, the above radiolabeled peptide was isolated from a tryptic digest. The equivalent peptide was also isolated by a similar procedure from rabbit liver cytochrome P-450 reductase.  相似文献   

10.
R G Kemp  R W Fox  S P Latshaw 《Biochemistry》1987,26(12):3443-3446
Previously, this laboratory has demonstrated [Colombo, G., & Kemp, R. G. (1976) Biochemistry 15, 1774-1780] that under appropriate conditions the citrate inhibitory binding site of rabbit skeletal muscle phosphofructokinase can be covalently modified by using pyridoxal phosphate and sodium borohydride. In the current study, phosphofructokinase was modified by [3H]pyridoxal phosphate and sodium borohydride with or without the addition of citrate to protect the ligand binding site. The modified proteins were digested with trypsin, and the peptides were separated by high-pressure liquid chromatography. A comparison of the tryptic chromatographic profiles showed that while the label was broadly distributed among nine peaks in the elution profile of the enzyme modified in the presence of the protective ligand, a single peptide contained 70% of the total radioactivity of the enzyme modified in the absence of citrate. This peptide was presumed to contain at least part of the citrate inhibitory site of the enzyme. The sequence of the peptide was determined and shown to match with positions 528-536 of phosphofructokinase with the modified residue being Lys-529. A comparison of the sequence with that of procaryotic phosphofructokinase indicated that a homologous residue in the enzyme from Bacillus stearothermophilis is critical to an allosteric site. A second peptide that was the most abundant labeled peptide in the digest of the enzyme modified in the presence of citrate was found to be identical with the second most abundant peptide of the digest from the unprotected enzyme. This peptide corresponded to residues 681-692 with the lysine at position 684 being the site of phosphopyridoxylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The complete amino acid sequence of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli has been established in the following manner. After being reduced with dithiothreitol, the purified aldolase was alkylated with iodoacetamide and subsequently digested with trypsin. The resulting 19 peptide peaks observed by high performance liquid chromatography, which compared with 21 expected tryptic cleavage products, were all isolated, purified, and individually sequenced. Overlap peptides were obtained by a combination of sequencing the N-terminal region of the intact aldolase and by cleaving the intact enzyme with cyanogen bromide followed by subdigestion of the three major cyanogen bromide peptides with either Staphylococcus aureus V8 endoproteinase, endoproteinase Lys C, or trypsin after citraconylation of lysine residues. The primary structure of the molecule was determined to be as follows. (formula; see text) 2-Keto-4-hydroxyglutarate aldolase from E. coli consists of 213 amino acids with a subunit and a trimer molecular weight of 22,286 and 66,858, respectively. No microheterogeneity is observed among the three subunits. The peptide containing the active-site arginine residue (Vlahos, C. J., Ghalambor, M. A., and Dekker, E. E. (1985) J. Biol. Chem. 260, 5480-5485) was also isolated and sequenced; this arginine residue occupies position 49. The Schiff base-forming lysine residue (Vlahos, C. J., and Dekker, E. E. (1986) J. Biol. Chem. 261, 11049-11055) is located at position 133. Whereas the active-site lysine peptide of this aldolase shows 65% homology with the same peptide of 2-keto-3-deoxy-6-phosphogluconate aldolase from Pseudomonas putida, these two proteins in toto show 49% homology.  相似文献   

12.
A photoaffinity substrate analogue, 8-azido-ADP-[14C]glucose, reacts specifically and covalently with Escherichia coli ADP-glucose synthetase. The site(s) of reaction of 8-azido-ADP-[14C]glucose with the enzyme was identified by isolation of tryptic peptides containing the labeled analogue by use of high performance liquid chromatography technique and subsequent NH2-terminal sequence analysis of the purified radioactive peptides. One major binding region of the azido analogue is a peptide segment composed of residues 107-114 of the enzyme's polypeptide chain. Lys 108 and Arg 114 become trypsin-resistant sites when the enzyme is photoinactivated by 8-azido-ADP-[14C] glucose, suggesting that the analogue binds at or near the vicinity of these 2 basic amino acid residues. Conformational analysis of this peptide segment (residues 107-114) shows a strong probability of a reverse beta-turn secondary structure, suggesting that this peptide segment is on the enzyme surface. Two minor reaction regions of the enzyme with the analogue were also identified by chemical characterization. One region was composed of residues 162-207. Lys 194 was previously suggested as the activator-binding site by chemical modification studies with pyridoxal phosphate (Parsons, T. F., and Preiss, J. (1978) J. Biol. Chem. 253, 7638-7645). Another minor region where the analogue binds the tryptic peptide composed of residues 380-385 is near the COOH-terminal side of the enzyme. It is postulated that all these peptide segments are juxtaposed in tertiary structure.  相似文献   

13.
Acyl-peptide hydrolase catalyzes the removal of an N alpha-acetylated amino acid residue from an N alpha-acetylated peptide. Two overlapping degenerate oligonucleotide probes based on the sequence of a CNBr tryptic peptide, derived from purified rat acyl-peptide hydrolase, were synthesized and used to screen a rat liver lambda gt11 cDNA library. A 2.5-kilobase cDNA was cloned and sequenced. This clone contained 2364 base pairs of rat acyl-peptide hydrolase sequence but lacked a translational initiation codon. Using a 220-base pair probe derived from near the 5'-end of this almost full-length cDNA to rescreen the library, full-length clones were isolated, which contained an in-frame ATG codon at nucleotides 6-8 and encoded the NH2-terminal sequence, Met-Glu-Arg-Gln.... The DNA sequence encoded a protein of 732 amino acid residues, 40% of which were confirmed by protein sequence data from 19 CNBr or CNBr tryptic peptides. The isolated enzyme is NH2-terminally blocked (Kobayashi, K., and Smith, J. A. (1987) J. Biol. Chem. 262, 11435-11445), and based on the NH2-terminal protein sequence deduced from the DNA sequence and the sequence of the most NH2-terminal CNBr peptide, it is likely that the NH2-terminal residue is an acetylated methionine residue, since such residues are frequently juxtaposed to glutamyl residues (Persson, B., Flinta, C., von Heijne, G., and Jornvall, H. (1985) Eur. J. Biochem. 152, 523-527). The RNA blot analysis revealed a single message of 2.7 kilobases in various rat tissues examined. Although this enzyme is known to be inhibited by diisopropyl fluorophosphate and acetylalanine chloromethyl ketone (Kobayashi, K., and Smith, J. A. (1987) J. Biol. Chem. 262, 11435-11445), no strong similarity in protein sequence has been found with other serine proteases. This result suggests that acyl-peptide hydrolase may be a unique serine protease.  相似文献   

14.
The covalent intermediate formed during catalysis by the lac Z beta-galactosidase from Escherichia coli can be trapped by reaction of the enzyme with 2',4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-galactopyranoside, thereby inactivating the enzyme. Kinetic parameters for this inactivation process with the holo- and apo-enzymes have been determined. The intermediate so formed turns over only very slowly (t1/2 = 11.5 h) resulting in reactivation of the enzyme. The nucleophilic amino acid involved has been identified as Glu-537 by using a tritium-labeled inactivator to label the enzyme, then cleaving the labeled protein into peptides and purifying and sequencing the labeled peptide. This residue is conserved in five homologous beta-galactosidases and is different from that (Glu-461) proposed to be the nucleophile (Herrchen, M., and Legler, G. (1984) Eur. J. Biochem. 138, 527-531) on the basis of affinity labeling studies with conduritol C cis-epoxide. A role for glutamic acid residue 461 as the acid/base catalyst is proposed and justified.  相似文献   

15.
The complete covalent structure of the constitutive cytochrome P-450, form 3b, from rabbit liver microsomes was determined. The apocytochrome contains 490 amino acid residues in a single polypeptide chain, Mr = 55,860. Peptides from selective chemical and proteolytic cleavages were isolated by a combination of gel filtration and high performance liquid chromatography and sequenced by automated Edman degradation. Overlapping peptide sequences were used to deduce the complete sequence. The constitutive form is only 46% homologous to the phenobarbital-induced cytochrome P-450 (Heinemann, F. S., and Ozols, J. (1983) J. Biol. Chem. 258, 4195-4201) and contains a deletion at position 22. Strongly conserved regions include Cys435 and a previously identified tryptic peptide, residues 345-357. The distribution of hydrophobic segments is used to predict the membrane topology of the protein, and four possible orientations of this protein in the membrane are presented.  相似文献   

16.
The complete amino acid sequence of human heart (R)-3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) has been deduced from the nucleotide sequence of cDNA clones. This mitochondrial enzyme has an absolute and specific requirement of phosphatidylcholine for enzymic activity (allosteric activator) and is an important prototype of lipid-requiring enzymes. Despite extensive studies, the primary sequence has not been available and is now reported. The mature form of the enzyme consists of 297 amino acids (predicted M(r) of 33,117), does not appear to contain any transmembrane helices, and is homologous with the family of short-chain alcohol dehydrogenases (SC-ADH) (Persson, B., Krook, M., and J?rnvall, H. (1991) Eur. J. Biochem. 200, 537-543) (30% residue identity with human 17 beta-hydroxysteroid dehydrogenase). The first two-thirds of the enzyme includes both putative coenzyme binding and active site conserved residues and exhibits a predicted secondary structure motif (alternating alpha-helices and beta-sheet) characteristic of SC-ADH. Bovine heart peptide sequences (174 residues in nine sequences determined by microsequencing) have extensive homology (89% identical residues) with the deduced human heart sequence. The C-terminal third (Asn-194 to Arg-297) shows little sequence homology with the SC-ADH and likely contains elements that determine the substrate specificity for the enzyme including the phospholipid (phosphatidylcholine) binding site(s). Northern blot analysis identifies a 1.3-kilobase mRNA encoding the enzyme in heart tissue.  相似文献   

17.
The malF gene product is an inner membrane component of the maltose transport system in Escherichia coli. Some gene fusions between malF and lacZ (encoding the normally cytoplasmic enzyme beta-galactosidase) produce hybrid proteins which are membrane-bound while other fusions produce hybrid proteins which are cytoplasmic (Silhavy, T. J., Casadaban, M. J., Shuman, H. A., and Beckwith, J. R. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 3423-3427). To further analyze the localization properties of the different classes of fusion proteins and of the intact MalF protein, we have obtained the DNA sequence of 5 malF-lacZ fusions and the wild type malF gene. From the predicted amino acid sequence, MalF protein contains 514 amino acids and has a molecular weight of 56,947. Analysis of the hydropathic character of MalF using the Kyte-Doolittle assignments (Kyte, J., and Doolittle, R. F. (1982) J. Mol. Biol. 157, 105-132), indicates that the protein may have 2 or 3 amino-terminal membrane-spanning segments and 4 or 5 carboxy-terminal membrane-spanning segments separated by a region of 181 hydrophilic residues. Localization properties of the different fusion proteins correspond with degree of hydrophobicity. By sequencing upstream from malF, the malE-malF intercistronic region was found to be 153 base pairs in length and to contain inverted repeats, homologous to intercistronic repeats of many other operons. Further analysis of this region may help in understanding the observed step-down in synthesis of the MalF protein.  相似文献   

18.
The photoaffinity inhibitor analog [2-3H]8-azido-AMP is specifically and covalently incorporated into Escherichia coli ADP-glucose synthetase. The reaction site(s) of [2-3H]8-azido-AMP with the enzyme was identified by reverse phase high performance liquid chromatography isolation and chemical characterization of CNBr and mouse submaxillary arginyl protease-generated peptides containing the labeled analog. Three regions of modification, represented by six labeled peptides, accounted for over 85% of the covalently bound label. The major binding region of the azido analog, composed of residues 108-128, contained approximately 55% of the recovered covalently bound radioactivity. A single residue, Tyr-113, contained between 50 and 75% of the label found in the major binding region. This site is the same as the major binding region of the substrate site-specific probe, 8-azido-ADP-[14C]glucose (Lee, Y. M., and Preiss, J. (1986) J. Biol. Chem. 261, 1058-1064). Conformational analysis of this region predicts that it is a part of a Rossmann fold, the supersecondary structure found in many adenine nucleotide-binding proteins. Two minor reaction regions of the enzyme with [2-3H]8-azido-AMP were also identified by chemical characterization. One region, containing 20% of the covalently bound label, was composed of residues 11-68. This region contains Lys-38, the previously determined pyridoxal phosphate-modified allosteric activator site (Parsons, T. F., and Preiss, J. (1978) J. Biol. Chem. 253, 7638-7645). The third minor region of modification, residues 222-254, contained approximately 15% of the covalently bound label. The three modified peptide regions may be juxtaposed in the enzyme's tertiary structure.  相似文献   

19.
The Lactobacillus bulgaricus beta-galactosidase gene was cloned on a ca. 7-kilobase-pair HindIII fragment in the vector pKK223-3 and expressed in Escherichia coli by using its own promoter. The nucleotide sequence of the gene and approximately 400 bases of 3'- and 5'-flanking sequences was determined. The amino acid sequence of the beta-galactosidase, deduced from the nucleotide sequence of the gene, yielded a monomeric molecular mass of ca. 114 kilodaltons, slightly smaller than the E. coli lacZ and Klebsiella pneumoniae lacZ enzymes but larger than the E. coli evolved (ebgA) beta-galactosidase. The cloned beta-galactosidase was found to be indistinguishable from the native enzyme by several criteria. From amino acid sequence alignments, the L. bulgaricus beta-galactosidase has a 30 to 34% similarity to the E. coli lacZ, E. coli ebgA, and K. pneumoniae lacZ enzymes. There are seven regions of high similarity common to all four of these beta-galactosidases. Also, the putative active-site residues (Glu-461 and Tyr-503 in the E. coli lacZ beta-galactosidase) are conserved in the L. bulgaricus enzyme as well as in the other two beta-galactosidases mentioned above. The conservation of active-site amino acids and the large regions of similarity suggest that all four of these beta-galactosidases evolved from a common ancestral gene. However, these enzymes are quite different from the thermophilic beta-galactosidase encoded by the Bacillus stearothermophilus bgaB gene.  相似文献   

20.
Although very little, if any, beta-galactosidase activity is detected in Yersinia pestis by a standard Miller assay, we found that Y. pestis KIM6+ cells formed blue colonies on plates containing 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-gal). Searches of the Y. pestis genome databases revealed the presence of noncontiguous sequences highly homologous to Escherichia coli lacZ, lacY, and lacI. Yersinia pestis lacZ is predicted to encode a 1060 amino-acid protein with 62% identity and 72% similarity to beta-galactosidase from E. coli. A deletion in the Y. pestis lacZ gene caused the formation of white colonies on X-gal-containing plates and beta-galactosidase activity was at background levels in the KIM6+lacZ mutant, while the complemented strain expressed about 190 Miller units. The Y. pestis lacZ promoter was not regulated by isopropylthiogalactoside or glucose. Finally, uptake of lactose by Y. pestis may be impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号