首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barnes MJ  Jen KL  Dunbar JC 《Peptides》2004,25(1):71-79
The intracerebroventricular (i.c.v.) infusion of beta-endorphin can cause either a decrease in blood pressure in normal rats or an increase in obese rats. Diet-induced obesity is associated with an increase of hypothalamic mu opioid receptors. Since beta-endorphins act by opioid receptors, we investigated the effect of CNS mu as well as kappa opioid receptor agonist and antagonist on mean blood pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) in male Wistar rats fed either a high fat (HF) (40% fat by weight) or a regular low fat (control) (4% fat by weight) diet. After a 12-week-feeding period the animals were implanted with i.c.v. cannulas and 3-5 days later they were anesthetized and instrumented to record MAP, HR and RSNA. HF rats have higher MAP and the i.c.v. injection of a mu opioid agonist (DAMGO) initially decreased the MAP and then increased MAP, HR and RSNA in the normal animals. The increase was greater in HF animals. The i.c.v. injection of the mu antagonist (beta-FNA) resulted in a significantly greater decrease in MAP in HF animals. beta-FNA increased the RSNA in the HF rats but decreased it in the normal rats. The kappa agonist (dynorphin) decreased MAP in normal rats followed by a return to baseline, but not in HF rats. The kappa antagonist, nor-binaltorphimine (N-BP), increased MAP and RSNA in normal rats and to a lesser extent in HF rats. These findings suggest that rats given a high fat diet have higher blood pressures and a greater mu opioid-mediated responsiveness with a greater mu opioid-mediated autonomic tone. Additionally there is a decreased kappa responsiveness and tone in the HF rats. Both these changes, increased mu and decreased kappa responsiveness could strongly contribute to the increased blood pressure in obese animals.  相似文献   

2.
Rao SP  Conley A  Dunbar JC 《Peptides》2003,24(5):745-754
The response to centrally administered beta-endorphin has been characterized by decreasing sympathetic nervous activity and decreased cardiovascular tone. We investigated the effect of the central administration of both mu and kappa opioid receptor agonist and antagonists on cardiovascular responses. The administration of the mu agonist, DAMGO (0.2nmol) increased the mean arterial pressure (MAP) and stimulated iliac vasoconstriction while higher doses (2 and 20nmol) decreased MAP and stimulated iliac vasodilation. The administration of the kappa receptor agonist, Dynorphin decreased the MAP and stimulated superior mesenteric vasodilation. beta-Funaltrexamine reduced MAP and superior mesenteric vasodilation while nor-binaltorphimine increased MAP and iliac and superior mesenteric vasoconstriction. We conclude that mu receptor activation decrease or increase MAP depending on the mu agonist concentration. However, kappa receptor activation is consistently associated with a decrease in MAP.  相似文献   

3.
Previous studies demonstrated that intracerebroventricular (icv) injection of a kappa opioid receptor agonist decreased, and a mu agonist increased, body temperature (Tb) in rats. A dose-response study with the selective kappa antagonist nor-binaltorphimine (nor-BNI) showed that a low dose (1.25 nmol, icv) alone had no effect, although a high dose (25 nmol, icv) increased Tb. It was hypothesized that the hyperthermia induced by nor-BNI was the result of the antagonist blocking the kappa opioid receptor and releasing its inhibition of mu opioid receptor activity. To determine whether the Tb increase caused by nor-BNI was a mu receptor-mediated effect, we administered the selective mu antagonist CTAP (1.25 nmol, icv) 15 min after nor-BNI (25 nmol, icv) and measured rectal Tb in unrestrained rats. CTAP significantly antagonized the Tb increase induced by icv injection of nor-BNI. Injection of 5 or 10 nmol of CTAP alone significantly decreased the Tb, and 1.25 nmol of nor-BNI blocked that effect, indicating that the CTAP-induced hypothermia was kappa-mediated. The findings strongly suggest that mu antagonists, in blocking the basal hyperthermia mediated by mu receptors, can unmask the endogenous kappa receptor-mediated hypothermia, and that there is a tonic balance between mu and kappa opioid receptors that serves as a homeostatic mechanism for maintaining Tb.  相似文献   

4.
The human mu opioid receptor was expressed stably in Flp-In T-REx HEK293 cells. Occupancy by the agonist DAMGO (Tyr-d-Ala-Gly-N-methyl-Phe-Gly-ol) resulted in phosphorylation of the ERK1/2 MAP kinases, which was blocked by the opioid antagonist naloxone but not the cannabinoid CB1 receptor inverse agonist SR141716A. Expression of the human cannabinoid CB1 receptor in these cells from the inducible Flp-In T-REx locus did not alter expression levels of the mu opioid receptor. This allowed the cannabinoid CB1 agonist WIN55212-2 to stimulate ERK1/2 phosphorylation but resulted in a large reduction in the capacity of DAMGO to activate these kinases. Although lacking affinity for the mu opioid receptor, co-addition of SR141716A caused recovery of the effectiveness of DAMGO. In contrast co-addition of the CB1 receptor neutral antagonist O-2050 did not. Induction of the CB1 receptor also resulted in an increase of basal [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding and thereby a greatly reduced capacity of DAMGO to further stimulate [(35)S]GTPgammaS binding. CB1 inverse agonists attenuated basal [(35)S]GTPgammaS binding and restored the capacity of DAMGO to stimulate. Flp-In T-REx HEK293 cells were generated, which express the human mu opioid receptor constitutively and harbor a modified D163N cannabinoid CB1 receptor that lacks constitutive activity. Induction of expression of the modified cannabinoid CB1 receptor did not limit DAMGO-mediated ERK1/2 MAP kinase phosphorylation and did not allow SR141716A to enhance the function of DAMGO. These data indicate that it is the constitutive activity inherent in the cannabinoid CB1 receptor that reduces the capacity of co-expressed mu opioid receptor to function.  相似文献   

5.
Barnes MJ  Holmes G  Primeaux SD  York DA  Bray GA 《Peptides》2006,27(12):3292-3298
Stimulation of mu opioid receptors preferentially increases the intake of a high fat diet. In this paper we investigated whether there was a difference in the expression of mu opioid receptors between animals susceptible (Osborne–Mendel) or resistant (S5B/Pl) to obesity induced by eating a high fat diet. Immunohistochemical studies demonstrated that Osborne–Mendel rats eating a chow diet had an increased number of mu opioid receptors in the arcuate nucleus when compared to S5B/Pl rats. These immunohistochemical findings were supported by Real Time-PCR which demonstrated that the mRNA level of mu opioid receptors was also increased in the hypothalamus of Osborne–Mendel rats compared to S5B/Pl rats. Low doses of the mu opioid receptor agonist DAMGO [d-Ala2-N-Me-Phe4-Glycol5]-enkephalin administered to Osborne–Mendel rats caused a significant increase in the preference for a diet high in fat. The same doses of DAMGO switched the diet preference of S5B/Pl rats to high fat but did not significantly increase food intake. The combination of these findings suggests that the increased levels of hypothalamic mu opioid receptors in Osborne–Mendel rats may contribute to their preference for a diet high in fat and increase their susceptibility to becoming obese.  相似文献   

6.
Lu H  Buison A  Jen KC  Dunbar JC 《Peptides》2000,21(10):1479-1485
Obesity in normal animals has been demonstrated to be associated with a decrease in sensitivity to leptin especially as it relates to leptin's capacity to increase sympathetic nerve activity and enhance cardiovascular dynamics. In normal animals leptin has been demonstrated to exert significant regulatory responses by its capacity to increase proopiomelanocortin (POMC) expression and especially the increase in alpha melanocyte stimulating hormone (alphaMSH). These responses to leptin are blocked by a melanocortin-4 (MC-4) receptor antagonist. In this study we investigated the responsiveness of the sympathetic nervous system and cardiovascular system of high fat fed obese animals to the intracerebroventricular (ICV) administration of the POMC products alphaMSH and beta-endorphin (beta-END). We further investigated these responses in obese animals following leptin administration in the presence of MC-4 receptor and opioid receptor blockade. The ICV administration of leptin resulted in an increase in lumbar sympathetic nerve activity (LSNA) and mean arterial pressure (MAP) in normals but decreased it in the obese. The ICV administration of alphaMSH increased the LSNA and MAP in normal animals but to a lesser degree in obese animals. On the other hand beta-endorphin decreased the LSNA and MAP in normal animals but increased it in obese animals. Additionally ICV leptin administration in obese animals in the presence of MC-4 or opioid receptor blockade resulted in an increase in sympathetic activity and a pressor response. From these studies we conclude that obesity in high fat fed animals is characterized by a decreased sensitivity to alphaMSH and a paradoxical response to beta-endorphin and this altered responsiveness may be a factor in the altered leptin resistance characteristic of obese animals.  相似文献   

7.
Kim KW  Son Y  Shin BS  Cho KP 《Life sciences》2001,68(11):1305-1315
Naltriben (NTB) has been used to differentiate the subtypes of delta opioid receptors, delta1 and delta2. However, there is considerable evidence suggesting that NTB may act on other types of opioid receptors too. We examined the effects of NTB on the specific binding of radiolabeled ligands for opioid mu and kappa2 receptors, and the effects on the release of [3H]norepinephrine ([3H]NE) in rat cerebral cortex slices. NTB displaced the specific binding of [3H]DAMGO with Ki value of 19.79 +/- 1.12 nM in rat cortex membranes. Specific binding of [3H]diprenorphine ([3H]DIP) was inhibited by NTB with Ki value of 82.75 +/- 6.32 nM in the presence of DAMGO and DPDPE. High K+ (15 mM)-stimulated release of [3H]NE was attenuated by DAMGO in rat cerebral cortex slices. NTB (30 nM) shifted the dose-response curve of DAMGO to the right and attenuated the maximal effect. In the meantime, NTB inhibited high K+-stimulated [3H]NE release at concentrations above 100 nM. The inhibitory effect of NTB was not attenuated by CTAP (10 nM) and naloxone (3 nM) but by higher concentration of naloxone (30 nM), nor-BNI (300 nM) and bremazocine (3 nM). These results indicate that NTB, depending on the dosage, could acts not only as an antagonist at delta but also as a noncompetitive antagonist for mu receptors, and as an agonist for kappa2 receptors in rat cerebral cortex.  相似文献   

8.
Chen LE  Gao C  Chen J  Xu XJ  Zhou DH  Chi ZQ 《Life sciences》2003,73(1):115-128
Internalization and recycling of G protein-coupled receptors (GPCRs), such as the mu-opioid receptor, largely depend on agonist stimulation. Agonist-promoted internalization of some GPCRs has been shown to mediate receptor desensitization, resensitization, and down-regulation. In this study, we investigated whether different mu opioid agonists displayed different effects in receptor internalization and recycling, the potential mechanisms involved in ohmefentanyl-induced internalization process. In transfected Sf9 insect cells expressing 6His-tagged wild type mu opioid receptor, exposure to 100 nM ohmefentanyl caused a maximum internalization of the receptor at 30 min and receptors seemed to reappear at the cell membrane after 60 min as determined by radioligand binding assay. Ohmefentanyl-induced human mu opioid receptor internalization was concentration-dependent, with about 40% of the receptors internalized following a 30-min exposure to 1 microM ohmefentanyl. 10 microM morphine and 1 microM DAMGO could also induce about 40% internalization. The antagonist naloxone and pretreatment with pertussis toxin both blocked ohmefentanyl-induced internalization without affecting internalization themselves. Incubation with sucrose 0.45 M significantly inhibited ohmefentanyl-induced internalization of the mu receptor. The removal of agonists ohmefentanyl and morphine resulted in the receptors gradually returning to the cell surface over a 60 min period, while the removal of agonist DAMGO only partly resulted in the receptor recycling. The results of this study suggest that ohmefentanyl-induced internalization of human mu opioid receptor in Sf9 insect cells occurs via Gi/o protein-dependent process that likely involves clathrin-coated pits. In addition, the recycling process displays the differential modes of action of different agonists.  相似文献   

9.
Previous studies suggested that opioid receptor agonists infused into the lateral ventricles can inhibit (through mu receptors) or facilitate (through delta receptors) the lordosis behavior of ovariectomized (OVX) rats treated with estrogen and a low dose of progesterone. The present study investigated the behavioral and hormonal specificity of those effects using more selective opioid receptor agonists. Sexually experienced OVX rats were implanted stereotaxically with guide cannulae aimed at the right lateral ventricle. One group of rats was treated with estradiol benzoate (EB, 10 micrograms) 48 hr and progesterone (P, 250 micrograms) 4 hr before testing, whereas the other group was treated with EB alone. Rats were infused with different doses of the selective mu-receptor agonist DAMGO, the selective delta-receptor agonist DPDPE, or the selective kappa-receptor agonist U50-488. The females were placed with a sexually vigorous male in a bilevel chamber (Mendelson and Gorzalka, 1987) for three tests of sexual behavior, beginning 15, 30, and 60 min after each infusion. DAMGO reduced lordosis quotients and magnitudes significantly in rats treated with EB and P, but not in rats treated with EB alone. In contrast, DPDPE and U50-488H increased lordosis quotients and magnitudes significantly in both steroid-treatment groups. Surprisingly, measures of proceptivity, rejection responses, and level changes were not affected significantly by mu or kappa agonists, although proceptivity and rejection responses were affected by DPDPE treatment. These results suggest that the effects of lateral ventricular infusions of opioid receptor agonists on the sexual behavior of female rats are relatively specific to lordosis behavior. Moreover, the facilitation of lordosis behavior by delta- or kappa-receptor agonists is independent of progesterone treatment, whereas the inhibitory effect of mu-receptor agonists on lordosis behavior may require the presence of progesterone.  相似文献   

10.
Mu opioid receptors are densely expressed in the patch compartment of striatum and contribute to methamphetamine-induced patch-enhanced gene expression and stereotypy. To further elucidate the role of mu opioid receptor activation in these phenomena, we examined whether activation of mu opioid receptors would enhance methamphetamine-induced stereotypy and prodynorphin, c-fos, arc and zif/268 expression in the patch and/or matrix compartments of striatum, as well as the impact of mu opioid receptor activation on the relationship between patch-enhanced gene expression and stereotypy. Male Sprague-Dawley rats were intrastriatally infused with d-Ala(2)-N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO; 1?μg/μL), treated with methamphetamine (0.5?mg/kg) and killed at 45?min or 2?h later. DAMGO augmented methamphetamine-induced zif/268 mRNA expression in the patch and matrix compartments, while prodynorphin expression was increased in the dorsolateral patch compartment. DAMGO pre-treatment did not affect methamphetamine-induced arc and c-fos expression. DAMGO enhanced methamphetamine-induced stereotypy and resulted in greater patch versus matrix expression of prodynorphin in the dorsolateral striatum, leading to a negative correlation between the two. These findings indicate that mu opioid receptors contribute to methamphetamine-induced stereotypy, but can differentially influence the genomic responses to methamphetamine. These data also suggest that prodynorphin may offset the overstimulation of striatal neurons by methamphetamine.  相似文献   

11.
The pontine parabrachial nucleus (PBN) has been implicated in regulating ingestion and contains opioids that promote feeding elsewhere in the brain. We tested the actions of the selective mu-opioid receptor (mu-OR) agonist [d-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAMGO) in the PBN on feeding in male rats with free access to food. Infusing DAMGO (0.5-4.0 nmol/0.5 microl) into the lateral parabrachial region (LPBN) increased food intake. The hyperphagic effect was anatomically specific to infusions within the LPBN, dose and time related, and selective for ingestion of chow compared with (nonnutritive) kaolin. The nonselective opioid antagonist naloxone (0.1-10.0 nmol intra-PBN) antagonized DAMGO-induced feeding, with complete blockade by 1.0 nmol and no effect on baseline. The highly selective mu-opioid antagonist d-Phe-Cys-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 1.0 nmol) also prevented this action of DAMGO, but the kappa-antagonist nor-binaltorphimine did not. Naloxone and CTAP (10.0 nmol) decreased intake during scheduled feeding. Thus stimulating mu-ORs in the LPBN increases feeding, whereas antagonizing these sites inhibits feeding. Together, our results implicate mu-ORs in the LPBN in the normal regulation of food intake.  相似文献   

12.
Vasopressinergic neurons in the paraventricular nucleus project to areas in the spinal cord from which sympathetic nerves originate. This pathway is hypothesized to be involved in the regulation of mean arterial pressure (MAP), particularly under various conditions of osmotic stress. Several studies measuring sympathetic nerve activity support this hypothesis. However, the evidence that spinal vasopressin influences MAP under physiological or pathophysiological conditions in conscious animals is limited. The purpose of this study was to investigate, in conscious rats, if the increases in MAP during acute or chronic osmotic stimuli are due to activation of spinal vasopressin (V1a) receptors. Three conditions of osmotic stress were examined: acute intravenous hypertonic saline, 24- and 48-h water deprivation, and 4 wk of DOCA-salt treatment. Rats were chronically instrumented with an indwelling catheter for intrathecal injections and a radiotelemeter to measure MAP. In normotensive rats, intrathecal vasopressin and V1a agonist increased MAP, heart rate, and motor activity; these responses were blocked by pretreatment with an intrathecal V1a receptor antagonist. However, when the intrathecal V1a antagonist was given during the three conditions of osmotic stress to investigate the role of "endogenous" vasopressin, the antagonist had no effect on MAP, heart rate, or motor activity. Contrary to the hypothesis suggested by previous studies, these findings indicate that spinal V1a receptors are not required for elevations of MAP under conditions of acute or chronic osmotic stress in conscious rats.  相似文献   

13.
The inhibitory effect of intracerebroventricularly-administered [D-Arg(2), beta-Ala(4)]-dermorphin (1-4) (TAPA), a highly selective mu(1)-opioid receptor agonist, on mouse gastrointestinal transit was compared with that of morphine and [D-Ala(2), N-methyl-Phe(4), Gly(5)-ol]-enkephalin (DAMGO). When administered intracerebroventricularly 5 min before the oral injection of charcoal meal, TAPA (10-100 pmol), morphine (0.25-4 nmol), and DAMGO (20-80 pmol) dose-dependently inhibited gastrointestinal transit of charcoal. The inhibitory effect of each mu-opioid receptor agonist was completely antagonized by naloxone, a nonselective opioid receptor antagonist. The inhibitory effects of morphine and DAMGO were significantly antagonized by both beta-funaltrexamine, a selective mu-opioid receptor antagonist, and naloxonazine, a selective mu(1)-opioid receptor antagonist. In contrast, the inhibitory effect of TAPA was not affected at all by beta-funaltrexamine, naloxonazine, nor-binaltorphimine (a selective kappa-opioid receptor antagonist), or naltrindole (a selective delta-opioid receptor antagonist). These results suggest that the inhibitory effect of TAPA on gastrointestinal transit may be mediated through an opioid receptor mechanism different from that of morphine and DAMGO.  相似文献   

14.
Cardiovascular effects of subcutaneous administration of synthetic alpha-lactorphin, a tetrapeptide (Tyr-Gly-Leu-Phe) originally derived from milk alpha-lactalbumin, were studied in conscious spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY) with continuous radiotelemetric monitoring. Alpha-lactorphin dose-dependently lowered blood pressure (BP) without affecting heart rate in SHR and WKY. The lowest dose which reduced BP was 10 microg/kg, and the maximal reductions in systolic and diastolic BP (by 23+/-4 and 17+/-4 mm Hg, respectively) were observed at 100 microg/kg dose in SHR. No further reductions were obtained at a higher dose of 1 mg/kg. There were no significant differences in the BP responses to alpha-lactorphin between SHR and WKY. Naloxone (1 and 3 mg/kg s.c.), a specific opioid receptor antagonist, abolished the alpha-lactorphin-induced reduction in BP and reversed it into a pressor response, which provides evidence for an involvement of opioid receptors in the depressor action of the tetrapeptide.  相似文献   

15.
Our previous investigations have demonstrated that microinjection of acetylcholine (ACh) or muscarinic ACh receptor activation in the cerebellar cortex induces a systemic blood pressure depressor response. This study aimed to determine the role of muscarinic ACh receptor-2 (M2 receptor) in the cerebellar cortex in cardiovascular function regulation in rats. A nonselective muscarinic receptor agonist (oxotremorine M, OXO; 30 mM), a selective M2 receptor agonist (arecaidine but-2-ynyl ester tosylate, ABET; 3, 10, and 30 mM), 30 mM OXO mixed with a selective M2 receptor antagonist (methoctramine hydrate, MCT; 0.3, 1, and 3 mM), and normal saline (0.9 % NaCl) were separately microinjected (0.5 µl/5 s) into the cerebellar cortex (lobule VI) of anaesthetized rats. We measured the mean arterial pressure (MAP), maximum change in MAP, and reactive time (RT; the duration required for the blood pressure to return to basal levels), heart rate (HR) and the maximum change in HR during the RT in response to drug activation. The results demonstrated that ABET dose-dependently decreased MAP and HR, increased the maximum change in MAP and the maximum change in HR, and prolonged the RT. Furthermore, MCT dose-dependently blocked the OXO-mediated cardiovascular depressor response. This study provides the first evidence that M2 receptors in the cerebellar cortex are involved in cardiovascular regulation, the activation of which evokes significant depressor and bradycardic responses.  相似文献   

16.
Nociceptin is the endogenous ligand of the opioid OP4 or ORL1 (opioid receptor-like1) receptor. It decreases blood pressure and heart rate in anesthetized and conscious rats and mice after its intravenous and intracerebroventricular injection in a manner sensitive to OP4 but not to OP1-3 (or delta, kappa and mu opioid) receptor antagonists. OP4 receptors involved in the cardiovascular effects of nociceptin were identified on sensory afferent fibres, in brain areas including the nucleus tractus solitarii and the rostral ventrolateral medulla, on preganglionic and/or postganglionic sympathetic and parasympathetic nerve fibres innervating blood vessels and heart or directly on these target organs. These receptors do not seem to be tonically activated but may play a role in the pathophysiology of inflammation, arterial hypertension and cardiac or brain circulatory ischemia.  相似文献   

17.
Prejunctional effects of opioids were examined in the perfused mesentery of two species: the rat and rabbit. Use of agonists selective for subtypes of mu, delta, and kappa opioid receptors produced no effect on contractile responses to adrenergic nerve stimulation in the rat perfused mesentery, except for small effects of the kappa agonist EKC, which may be non specific. In contrast, mu, delta and kappa receptors appear to be present in the rabbit. The mu selective agonist, DAMGO, kappa agonist, ethylketocyclazocine, and delta agonists, DPDPE and [Leu5]-enkephalin, all produced significant inhibition of contractile responses to transmural nerve stimulation. The inhibitory effect was greatest for ethylketocyclazocine. To test the possibility that prejunctional activation of alpha 2 adrenoceptors with endogenous norepinephrine might decrease the activity of prejunctional opioid receptors in the rabbit, inhibitory effects of delta and kappa selective agonists were tested in the presence of 10(-7) M yohimbine. Inhibitory responses of the kappa selective agonist ethylketocyclazocine were enhanced, while that of delta selective agonists [Leu5]-enkephalin and DPDPE remained unchanged when yohimbine was present. Thus, the effects of opioids vary and depend on the tissue and receptor subtypes they act upon. Furthermore, the enhanced inhibitory effect of opioid receptor activation in the presence of yohimbine is not found for all opioid receptors.  相似文献   

18.
We have previously demonstrated that leptin-mediated activation of the central nervous system (CNS) melanocortin system reduces appetite and increases sympathetic activity and blood pressure (BP). In the present study we examined whether endogenous melanocortin system activation, independent of leptin's actions, contributes to the regulation of BP and metabolic functions in obese Zucker rats, which have mutated leptin receptors. The long-term cardiovascular and metabolic effects of central melanocortin-3/4 receptor (MC3/4R) antagonism with SHU-9119 were assessed in lean (n = 6) and obese (n = 8) Zucker rats. BP and heart rate (HR) were measured 24-h/day by telemetry and an intracerebroventricular cannula was placed in the brain lateral ventricle. After stable control measurements, SHU-9119 was infused intracerebroventricularlly (1 nmol/h) for 10 days followed by a 10-day recovery period. Chronic CNS MC3/4R antagonism significantly increased food intake and body weight in lean (20 ± 1 to 45 ± 2 g and 373 ± 11 to 432 ± 14 g) and obese (25 ± 2 to 35 ± 2 g and 547 ± 10 to 604 ± 11 g) rats. No significant changes were observed in plasma glucose levels in lean or obese rats, whereas plasma leptin and insulin levels markedly increased in lean Zucker rats during CNS MC3/4R antagonism. Chronic SHU-9119 infusion in obese Zucker rats reduced mean arterial pressure (MAP) and HR by 6 ± 1 mmHg and 24 ± 5 beats/min, whereas in lean rats SHU-9119 infusion reduced HR by 31 ± 9 beats/min while causing only a transient decrease in MAP. These results suggest that in obese Zucker rats the CNS melanocortin system contributes to elevated BP independent of leptin receptor activation.  相似文献   

19.
In the present study, we evaluated the involvement of the rennin-angiotensin system (RAS) in the control of the blood pressure (BP), baroreceptor-mediated bradycardia and the reactivity of caudal ventrolateral medulla (CVLM) neurons to Ang II and to AT(2) receptor antagonist in sedentary or trained renovascular hypertensive rats. Physical activity did not significantly change the baseline mean arterial pressure (MAP), heart rate (HR) or the sensitivity of the baroreflex bradycardia in normotensive Sham rats. However, in 2K1C hypertensive rats, physical activity induced a significant fall in baseline MAP and HR and produced an improvement of the baroreflex function (bradycardic component). The microinjections of Ang II into the CVLM produced similar decreases in MAP in all groups, Sham and 2K1C, sedentary and trained rats. The hypotensive effect of Ang II at the CVLM was blocked by previous microinjection of the AT(2) receptors antagonist, PD123319, in all groups of rats. Unexpectedly, microinjection of PD123319 at the CVLM produced a depressor effect in 2K1C sedentary that was attenuated in 2K1C trained rats. No significant changes in MAP were observed after PD123319 in Sham rats, sedentary or trained. These data showed that low-intensity physical activity is effective in lowering blood pressure and restoring the sensitivity of the baroreflex bradycardia, however these cardiovascular effects are not accompanied by changes in the responsiveness to Ang II at CVLM in normotensive or hypertensive, 2K1C rats. In addition, the blood pressure changes observed after AT(2) blockade in 2K1C rats suggest that hypertension may trigger an imbalance of AT(1)/AT(2) receptors at the CVLM that may be restored, at least in part, by low-intensity physical activity.  相似文献   

20.
It has been shown that mu-opioid receptor stimulation by intravenous administration of the selective mu receptor agonist DALDA in a dose of 0.1 mg/kg prevented ischemic and reperfusion arrhythmias in rats subjected to coronary artery occlusion (10 min) and reperfusion (10 min), and also increased the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis. These effects were abolished by pre-treatment with the selective mu receptor antagonist CTAP in a dose of 0.5 mg/kg or by prior injection of the opioid receptor antagonist naloxone methiodide (2 mg/kg) which does not penetrate the blood-braib barrier. Both antagonists by themselves had no effect on the incidence of occlusion or reperfusion-induced arrhythmias or on the ventricular fibrillation threshold. Pre-treatment with ATP-sensitive K+ channel (KATP channel) blocker glibenclamide in a dose of 0.3 mg/kg completely abolished the antiarrhythmic effect of DALDA. We believe that DALDA prevents occurrence of electrical instability during ischemia and reperfusion and increases the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis via stimulation of peripheral mu-opioid receptor which appear to be coupled to the KATP channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号