首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiplet-filtered and gradient-selected heteronuclear zero-quantum coherence (gsHZQC) TROSY experiments are described for measuring (1)H-(13)C correlations for (13)CH(3) methyl groups in proteins. These experiments provide improved suppression of undesirable, broad outer components of the heteronuclear zero-quantum multiplet in medium-sized proteins, or in flexible sites of larger proteins, compared to previously described HZQC sequences (Tugarinov et al. in J Am Chem Soc 126:4921-4925, 2004; Ollerenshaw et al. in J Biomol NMR 33:25-41, 2005). Hahn-echo versions of the gsHZQC experiment also are described for measuring zero- and double-quantum transverse relaxation rate constants for identification of chemical exchange broadening. Application of the proposed pulse sequences to Escherichia coli ribonuclease HI, with a molecular mass of 18 kD, indicates that improved multiplet suppression is obtained without substantial loss of sensitivity.  相似文献   

2.
An understanding of side chain motions in protein is of great interest since side chains often play an important role in protein folding and intermolecular interactions. A novel method for measuring the dynamics of methyl groups in uniformly 13C-, 15N-labeled proteins has been developed by our group. The method relies on the difference in peak intensities of 13C quartet components of methyl groups, in a spectrum recording the free evolution of 13C under proton coupling in a constant-time period. Cross-correlated relaxation rates between 13C-1H dipoles can be easily measured from the intensities of the multiplet components. The degree of the methyl restrictions (S 2) can be estimated from the cross-correlated relaxation rate. The method is demonstrated on a sample of human fatty acid binding protein in the absence of fatty acid. We obtained relaxation data for 33 out of 46 residues having methyl groups in apo-IFABP. It has been found that the magnitude of the CSA tensor of spin 13C in a methyl group could be estimated from the intensities of the 13C multiplet components.  相似文献   

3.
A CC(CO)NH TOCSY-based 3D pulse scheme is presented for measuring (1)H-(13)C dipole-dipole cross-correlated relaxation at CH(2) positions in uniformly (13)C-, (15)N-labeled proteins. Simulations based on magnetization evolution under relaxation and scalar coupling interactions show that cross-correlation rates between (1)H-(13)C dipoles in CH(2) groups can be simply obtained from the intensities of (13)C triplets. The normalized cross-correlation relaxation rates are related to cross-correlation order parameters for macromolecules undergoing isotropic motion, which reflect the degrees of spatial restriction of CH(2) groups. The study on human intestinal fatty acid binding protein (131 residues) in the presence of oleic acid demonstrates that side chain dynamics at most CH(2) positions can be characterized for proteins less than 15 kDa in size, with the proposed TOCSY-based approach.  相似文献   

4.
Cross-correlated fluctuations of isotropic chemical shifts can provide evidence for slow motions in biomolecules. Slow side-chain dynamics have been investigated in (15)N and (13)C enriched ubiquitin by monitoring the relaxation of C(alpha)-C(beta) two-spin coherences (Frueh et al., 2001). This method, which had hitherto been demonstrated only for protonated ubiquitin, has now been applied to both protonated and deuterated proteins. Deuteration reduces the dipole-dipole contributions to the DD/DD cross-correlation, thus facilitating the observation of subtle effects due to cross-correlation of the fluctuations of the isotropic (13)C chemical shifts. The decays of double- and zero-quantum coherences are significantly slower in the deuterated protein than in the protonated sample. Slow motions are found both in loops and in secondary structure elements.  相似文献   

5.
A simple spectral editing procedure is described that generates separate subspectra for the methyl 13C-1H3 multiplet components of 1H-13C HSQC spectra. The editing procedure relies on co-addition of in-phase and antiphase spectra and yields 1H-coupled constant-time HSQC subspectra for the methyl region that have the simplicity of the regular decoupled CT-HSQC spectrum. Resulting spectra permit rapid and reliable measurement of 1H-13C J and dipolar couplings. The editing procedure is illustrated for a Ca2+-calmodulin sample in isotropic and liquid crystalline phases.  相似文献   

6.
The complex 1H NMR spectrum of methyl 2,6:3,4-dianhydro-alpha-D-altropyranoside (1) has been analyzed and simulated in detail by using input parameters derived from experimental 1H chemical shifts, long- and short-range coupling constants, spin-lattice relaxation times, and effective, spin-spin relaxation times obtained by trial and error matching of the experimental and simulated spectra. The 13C spin-lattice relaxation times of 1 have also been measured, and along with the 1H-1H long- and short-range coupling constants, have been interpreted in terms of the geometry of 1 defined by molecular dynamics with simulated annealing.  相似文献   

7.
Summary Three-dimensional 1H-TOCSY-relayed ct-[13C,1H]-HMQC is a novel experiment for aromatic spin system identification in uniformly 13C-labeled proteins, which is implemented so that it correlates the chemical shift of a given aromatic proton with those of the directly attached carbon and all vicinal protons. The ct-HMQC scheme is used both for overlay of the indirect 1H and 13C chemical shift evolution periods and for the generation of 1H-1H antiphase magnetization to accelerate the 1H-TOCSY magnetization transfer at short mixing times. As an illustration, data recorded for the 18 kDa protein cyclophilin A are presented. Since transverse relaxation of 13C-1H zero-quantum and double-quantum coherences is to first order insensitive to 13C-1H heteronuclear dipolar relaxation, the new experiment should work also for proteins with molecular weights above 20 kDa.  相似文献   

8.
The FF domain from the human protein HYPA/FBP11 folds via a low-energy on-pathway intermediate (I). Elucidation of the structure of such folding intermediates and denatured states under conditions that favour folding are difficult tasks. Here, we investigated the millisecond time-scale equilibrium folding transition of the 71-residue four-helix bundle wild-type protein by (15)N, (13)C(alpha) and methyl(13)C Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion experiments and by (1)H/(2)H-exchange measurements. The relaxation data for the wild-type protein fitted a simple two-site exchange process between the folded state (F) and I. Destabilization of F in mutants A17G and Q19G allowed the detection of the unfolded state U by (15)N CPMG relaxation dispersion. The dispersion data for these mutants fitted a three-site exchange scheme, U<-->I<-->F, with I populated higher than U. The kinetics and thermodynamics of the folding reaction were obtained via temperature and urea-dependent relaxation dispersion experiments, along with structural information on I from backbone (15)N, (13)C(alpha) and side-chain methyl (13)C chemical shifts, with further information from protection factors for the backbone amide groups from (1)H/(2)H-exchange. Notably, helices H1-H3 are at least partially formed in I, while helix H4 is largely disordered. Chemical shift differences for the methyl (13)C nuclei suggest a paucity of stable, native-like hydrophobic interactions in I. These data are consistent with Phi-analysis of the rate-limiting transition state between I and F. The combination of relaxation dispersion and Phi data can elucidate whole experimental folding pathways.  相似文献   

9.
In this paper it is demonstrated that cross-correlated time modulation of isotropic chemical shifts (`conformational exchange') leads to differential relaxation of double- and zero-quantum coherences, respectively. Quantitative information can be obtained from the time dependence of the interconversion between the two two-spin coherences 2IxSx and 2IySy, induced by the differential relaxation. The effect is illustrated with an application to 13C,15N-labeled quail CRP2(LIM2), by studying 15N-1HN multiple-quantum relaxation. Significant cross-correlated fluctuations of isotropic chemical shifts were observed for residues which are part of a disordered loop region connecting two -strands in CRP2(LIM2). Differential 1HN and 15N exchange contributions to multiple-quantum relaxation observed at these sites illustrate the complex interplay between hydrogen bonding events and conformational reorientations in proteins.  相似文献   

10.
Although ethanol has been reported to affect cholesterol homeostasis in biological membranes, the molecular mechanism of action is unknown. Here, nuclear magnetic resonance (NMR) spectroscopic techniques have been used to investigate possible direct interactions between ethanol and cholesterol in various low dielectric solvents (acetone, methanol, isopropanol, DMF, DMSO, chloroform, and CCl(4)). Measurement of (13)C chemical shifts, spin-lattice and multiplet relaxation times, as well as self-diffusion coefficients, indicates that ethanol interacts weakly, yet specifically, with the HC-OH moiety and the two flanking methylenes in the cyclohexanol ring of cholesterol. This interaction is most strong in the least polar-solvent carbon tetrachloride where the ethanol-cholesterol equilibrium dissociation constant is estimated to be 2 x 10(-3) M. (13)C-NMR spin-lattice relaxation studies allow insight into the geometry of this complex, which is best modeled with the methyl group of ethanol sandwiched between the two methylenes in the cyclohexanol ring and the hydroxyl group of ethanol hydrogen bonded to the hydroxyl group of cholesterol.  相似文献   

11.
Protein side chain dynamics is associated with protein stability, folding, and intermolecular interactions. Detailed dynamics information is crucial for the understanding of protein function and biochemical and biophysical properties, which can be obtained using NMR relaxation techniques. In this review, (13)C relaxation of methine, methylene and methyl groups with and without (1)H decoupling are described briefly for a better understanding of how spin relaxation is associated with motional (dynamics) parameters. Developments in the measurement and interpretation of (13)C auto-relaxation and cross-correlated relaxation data are presented too. Finally, recent progress in the use of (13)C relaxation to probe the dynamics of protein side chains is detailed mainly for the dynamics of non-deuterated proteins on picoseconds-nanosecond timescales.  相似文献   

12.
Nearly complete assignment of the aliphatic 1H and 13C resonances of the IIAglc domain of Bacillus subtilis has been achieved using a combination of double- and triple-resonance three-dimensional (3D) NMR experiments. A constant-time 3D triple-resonance HCA(CO)N experiment, which correlates the 1H alpha and 13C alpha chemical shifts of one residue with the amide 15N chemical shift of the following residue, was used to obtain sequence-specific assignments of the 13C alpha resonances. The 1H alpha and amide 15N chemical shifts had been sequentially assigned previously using principally 3D 1H-15N NOESY-HMQC and TOCSY-HMQC experiments [Fairbrother, W. J., Cavanagh, J., Dyson, H. J., Palmer, A. G., III, Sutrina, S. L., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1991) Biochemistry 30, 6896-6907]. The side-chain spin systems were identified using 3D HCCH-COSY and HCCH-TOCSY spectra and were assigned sequentially on the basis of their 1H alpha and 13C alpha chemical shifts. The 3D HCCH and HCA(CO)N experiments rely on large heteronuclear one-bond J couplings for coherence transfers and therefore offer a considerable advantage over conventional 1H-1H correlation experiments that rely on 1H-1H 3J couplings, which, for proteins the size of IIAglc (17.4 kDa), may be significantly smaller than the 1H line widths. The assignments reported herein are essential for the determination of the high-resolution solution structure of the IIAglc domain of B. subtilis using 3D and 4D heteronuclear edited NOESY experiments; these assignments have been used to analyze 3D 1H-15N NOESY-HMQC and 1H-13C NOESY-HSQC spectra and calculate a low-resolution structure [Fairbrother, W. J., Gippert, G. P., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1992) FEBS Lett. 296, 148-152].  相似文献   

13.
Tugarinov V  Kay LE 《Biochemistry》2005,44(49):15970-15977
A detailed understanding of molecular recognition is predicated not only on high-resolution static structures of the free and bound states but also on information about how these structures change with time, that is, molecular dynamics. Here we present a deuterium ((2)H) and carbon ((13)C) NMR relaxation study of methyl side chain dynamics in the 82 kDa enzyme malate synthase G (MSG) that is a promising target for the development of new antibiotic agents. It is shown that excellent agreement between (2)H- and (13)C-derived measures of dynamics is obtained, with correlation coefficients exceeding 0.95. The binding interface formed by MSG and its substrates is found to be highly dynamic in the ligand-free state of the enzyme with rigidification upon binding substrate. This study establishes that detailed, quantitative information about methyl side chain dynamics can be obtained by NMR on proteins with molecular masses on the order of 100 kDa and opens up the possibilities for studies of motion in a large number of important systems.  相似文献   

14.
Recently we have shown that HMQC spectra of protonated methyl groups in high molecular weight, highly deuterated proteins have large enhancements in sensitivity and resolution relative to HSQC-generated data sets. These enhancements derive from a TROSY effect in which complete cancellation of intra-methyl (1)H-(1)H and (1)H-(13)C dipolar interactions occurs for 50% of the signal in the case of HMQC, so long as the methyl is attached to a molecule tumbling in the macromolecular limit (Tugarinov, V., Hwang, P.M., Ollerenshaw, J.E., Kay, L.E. J. Am. Chem. Soc. (2003) 125, 10420-10428; Ollerenshaw, J.E., Tugarinov, V. and Kay, L.E. Magn. Reson. Chem. (2003) 41, 843-852. The first demonstration of this effect was made for isoleucine delta1 methyl groups in a highly deuterated 82 kDa protein, malate synthase G. As with (1)H-(15)N TROSY spectroscopy high levels of deuteration are critical for maximizing the TROSY effect. Here we show that excellent quality methyl TROSY spectra can be recorded on U-[(2)H] Iledelta1-[(13)CH(3)] Leu,Val-[(13)CH(3)/(12)CD(3)] protein samples, significantly extending the number of probes available for structural and dynamic studies of high molecular weight systems.  相似文献   

15.
Side chain dynamics monitored by 13C-13C cross-relaxation   总被引:1,自引:0,他引:1  
A method to measure (13)C-(13)C cross-relaxation rates in a fully (13)C labeled protein has been developed that can give information about the mobility of side chains in proteins. The method makes use of the (H)CCH-NOESY pulse sequence and includes a suppression scheme for zero-quantum (ZQ) coherences that allows the extraction of initial rates from NOE buildup curves.The method has been used to measure (13)C-(13)C cross-relaxation rates in the 269-residue serine-protease PB92. We focused on C(alpha)-C(beta) cross-relaxation rates, which could be extracted for 64% of all residues, discarding serine residues because of imperfect ZQ suppression, and methyl (13)C-(13)C cross-relaxation rates, which could be extracted for 47% of the methyl containing C-C pairs. The C(alpha)-C(beta) cross-relaxation rates are on average larger in secondary structure elements as compared to loop regions, in agreement with the expected higher rigidity in these elements. The cross-relaxation rates for methyl containing C-C pairs show a general decrease of rates further into the side chain, indicating more flexibility with increasing separation from the main chain. In the case of leucine residues also long-range C(beta)-C(delta) cross-peaks are observed. Surprisingly, for most of the leucines a cross-peak with only one of the methyl C(delta) carbons is observed, which correlates well with the chi(2) torsion-angle and can be explained by a difference in mobility for the two methyl groups due to an anisotropic side chain motion.  相似文献   

16.
Methyl groups provide an important source of structural and dynamic information in NMR studies of proteins and their complexes. For this purpose sequence-specific assignments of methyl 1H and 13C resonances are required. In this paper we propose the use of 13C-detected 3D HN(CA)C and HMCMC experiments for assignment of methyl 1H and 13C resonances using a single selectively methyl protonated, perdeuterated and 13C/15N-labeled sample. The high resolution afforded in the 13C directly-detected dimension allows one to rapidly and unambiguously establish correlations between backbone HN strips from the 3D HN(CA)C spectrum and methyl group HmCm strips from the HMCMC spectrum by aligning all possible side-chain carbon chemical shifts and their multiplet splitting patterns. The applicability of these experiments for the assignment of methyl 1H and 13C resonances is demonstrated using the 18.6 kDa B domain of the Escherichia coli mannose transporter (IIBMannose).  相似文献   

17.
Methyl esters of gamma-linolenic acid, alpha-linolenic acid and stearidonic acid were epoxidised using m-chloroperbenzoic acid to achieve nine cis-monoepoxy-C18 fatty acid methyl esters (FAMEs), including novel methyl cis-monoepoxy derivatives of stearidonic acid and a cis-6,7-epoxy derivative of gamma-linolenic acid. These nine monoepoxy FAMEs were purified by normal-phase HPLC, identified by LC-MS, 1H and 13C NMR, and characterized by mass spectrometry and NMR spectroscopy. This study is focused on structural characterization of these C18 monoepoxy FAMEs using techniques in NMR spectroscopy including 1H, 13C, 1H-1H correlated spectroscopy (COSY) and 1H-13C heteronuclear correlation (HETCOR). The proton and carbon NMR chemical shifts of the epoxide, the double bonds, and the interrupted methylenes are assigned. Also discussed is an interpretation of the 1H and 13C NMR spectra of these monoepoxides including the changes in the 13C resonance of the olefinic carbons on the neighboring double bonds resulting from epoxide formation.  相似文献   

18.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported.  相似文献   

19.
Summary A method for measuring J(C,P) and J(H,P) coupling constants is presented, based on fitting a target multiplet containing the heteronuclear coupling to a reference multiplet that lacks the heteronuclear coupling. In DNA and RNA oligonucleotides, information on backbone torsion angles can be obtained from these couplings. Experimental multiplets are obtained from 31P-coupled and 31P-decoupled 1H, 13C HSQC spectra of Rp-cyclic methylphosphonate. The accuracy to which the heteronuclear coupling constants can be determined depends on the signal-to-noise ratio of the experimental data and is analyzed in detail.Dedicated to Prof. R.R. Ernst on the occasion of his 60th birthday.  相似文献   

20.
Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743–1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum 1H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum 1H–13C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [13CH3]-methyl-labeled, highly deuterated protein systems up to ~100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号