首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genital herpes is caused by herpes simplex virus 1 (HSV-1) and HSV-2, and its incidence is constantly increasing in the human population. Regardless of the clinical manifestation, HSV-1 and HSV-2 infections are highly transmissible to sexual partners and enhance susceptibility to other sexually transmitted infections. An effective vaccine is not yet available. Here, HSV-1 glycoprotein B (gB1) was delivered by a feline immunodeficiency virus (FIV) vector and tested against HSV-1 and HSV-2 vaginal challenges in C57BL/6 mice. The gB1 vaccine elicited cross-neutralizing antibodies and cell-mediated responses that protected 100 and 75% animals from HSV-1- and HSV-2-associated severe disease, respectively. Two of the eight fully protected vaccinees underwent subclinical HSV-2 infection, as demonstrated by deep immunosuppression and other analyses. Finally, vaccination prevented death in 83% of the animals challenged with a HSV-2 dose that killed 78 and 100% naive and mock-vaccinated controls, respectively. Since this FIV vector can accommodate two or more HSV immunogens, this vaccine has ample potential for improvement and may become a candidate for the development of a truly effective vaccine against genital herpes.  相似文献   

2.
The genes for three convertases, PC1 (Nec-1), PC2 (Nec-2), and furin (Fur), have been regionally localized on chromosomes 13, 2, and 7, respectively, by interspecific backcross analysis. These results refine previous localizations by in situ hybridization as well as confirm and extend known regions of homology between mouse and human chromosomes.  相似文献   

3.
The results from a number of studies have documented that the HSV glycoprotein gD is an important target for neutralizing antibodies. In contrast, little is known about the Th cell determinants present on HSV that are required for anti HSV gD antibody production. In our study we have immunized BALB/c mice with a recombinant source of HSV-1 gD lacking the carboxyl-terminal 93 amino acids. T cell hybridomas produced from the immunized animals recognized a single antigenic peptide (amino acids 246-261) in the context of I-Ad. The determinant expressed by gD peptide 246-261 was generated and presented by both HSV-1 and HSV-2 infected APC. Fine specificity analysis using truncated synthetic gD peptides revealed that the minimal amino acids recognized by the T hybrids were identical between HSV-1 and HSV-2. In addition, the minimal peptide-I-Ad binding analysis demonstrated that the minimal peptide sequence required for the binding to I-Ad and for T cell recognition contained two prolines. Thus, this important HSV antigenic determinant would not be expected to form an amphipathic alpha-helix and could therefore be missed by algorithms currently used to predict which amino acid sequences would be antigenic based on the propensity to form helices.  相似文献   

4.
Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, respectively) are prevalent human pathogens of clinical relevance that establish long-life latency in the nervous system. They have been considered, along with the Herpesviridae family, to exhibit a low level of genetic diversity during viral replication. However, the high ability shown by these viruses to rapidly evolve under different selective pressures does not correlates with that presumed genetic stability. High-throughput sequencing has revealed that heterogeneous or plaque-purified populations of both serotypes contain a broad range of genetic diversity, in terms of number and frequency of minor genetic variants, both in vivo and in vitro. This is reminiscent of the quasispecies phenomenon traditionally associated with RNA viruses. Here, by plaque-purification of two selected viral clones of each viral subtype, we reduced the high level of genetic variability found in the original viral stocks, to more genetically homogeneous populations. After having deeply characterized the genetic diversity present in the purified viral clones as a high confidence baseline, we examined the generation of de novo genetic diversity under culture conditions. We found that both serotypes gradually increased the number of de novo minor variants, as well as their frequency, in two different cell types after just five and ten passages. Remarkably, HSV-2 populations displayed a much higher raise of nonconservative de novo minor variants than the HSV-1 counterparts. Most of these minor variants exhibited a very low frequency in the population, increasing their frequency over sequential passages. These new appeared minor variants largely impacted the coding diversity of HSV-2, and we found some genes more prone to harbor higher variability. These data show that herpesviruses generate de novo genetic diversity differentially under equal in vitro culture conditions. This might have contributed to the evolutionary divergence of HSV-1 and HSV-2 adapting to different anatomical niche, boosted by selective pressures found at each epithelial and neuronal tissue.  相似文献   

5.
A prophylactic vaccine for genital herpes disease remains an elusive goal. We report the results of two studies performed collaboratively in different laboratories that assessed immunogenicity and vaccine efficacy in herpes simplex virus 1 (HSV-1)-seropositive guinea pigs immunized and subsequently challenged intravaginally with HSV-2. In study 1, HSV-2 glycoproteins C (gC2) and D (gD2) were produced in baculovirus and administered intramuscularly as monovalent or bivalent vaccines with CpG and alum. In study 2, gD2 was produced in CHO cells and given intramuscularly with monophosphoryl lipid A (MPL) and alum, or gC2 and gD2 were produced in glycoengineered Pichia pastoris and administered intramuscularly as a bivalent vaccine with Iscomatrix and alum to HSV-1-naive or -seropositive guinea pigs. In both studies, immunization boosted neutralizing antibody responses to HSV-1 and HSV-2. In study 1, immunization with gC2, gD2, or both immunogens significantly reduced the frequency of genital lesions, with the bivalent vaccine showing the greatest protection. In study 2, both vaccines were highly protective against genital disease in naive and HSV-1-seropositive animals. Comparisons between gD2 and gC2/gD2 in study 2 must be interpreted cautiously, because different adjuvants, gD2 doses, and antigen production methods were used; however, significant differences invariably favored the bivalent vaccine. Immunization of naive animals with gC2/gD2 significantly reduced the number of days of vaginal shedding of HSV-2 DNA compared with that for mock-immunized animals. Surprisingly, in both studies, immunization of HSV-1-seropositive animals had little effect on recurrent vaginal shedding of HSV-2 DNA, despite significantly reducing genital disease.  相似文献   

6.
Herpes simplex virus type 2 (HSV-2) is transmitted through the genital mucosa during sexual encounters. In recent years, HSV-1 has also become commonly associated with primary genital herpes. The mechanism of viral entry of HSV-1 and HSV-2 in the female genital tract is unknown. In order to understand the molecular interactions required for HSV entry into the vaginal epithelium, we examined the expression of herpesvirus entry mediator nectin-1 in the vagina of human and mouse at different stages of their hormonal cycle. Nectin-1 was highly expressed in the epithelium of human vagina throughout the menstrual cycle, whereas the mouse vaginal epithelium expressed nectin-1 only during the stages of the estrous cycle in which mice are susceptible to vaginal HSV infection. Furthermore, the ability of nectin-1 to mediate viral entry following intravaginal inoculation was examined in a mouse model of genital herpes. Vaginal infection with either HSV-1 or HSV-2 was blocked by preincubation of the virus with soluble recombinant nectin-1. Viral entry through the vaginal mucosa was also inhibited by preincubation of HSV-2 with antibody against gD. Together, these results suggest the importance of nectin-1 in mediating viral entry for both HSV-1 and HSV-2 in the genital mucosa in female hosts.  相似文献   

7.
To date, no vaccine that is safe and effective against herpes simplex virus 2 (HSV-2) disease has been licensed. In this study, we evaluated a DNA prime-formalin-inactivated-HSV-2 (FI-HSV2) boost vaccine approach in the guinea pig model of acute and recurrent HSV-2 genital disease. Five groups of guinea pigs were immunized and intravaginally challenged with HSV-2. Two groups were primed with plasmid DNAs encoding the secreted form of glycoprotein D2 (gD2t) together with two genes required for viral replication, either the helicase (UL5) and DNA polymerase (UL30) genes or the single-stranded DNA binding protein (UL29) and primase (UL52) genes. Both DNA-primed groups were boosted with FI-HSV2 formulated with monophosphoryl lipid A (MPL) and alum adjuvants. Two additional groups were primed with the empty backbone plasmid DNA (pVAX). These two groups were boosted with MPL and alum (MPL-alum) together with either formalin-inactivated mock HSV-2 (FI-Mock) or with FI-HSV2. The final group was immunized with gD2t protein in MPL-alum. After challenge, 0/9 animals in the group primed with UL5, UL30, and gD2t DNAs and all 10 animals in the mock-immunized control group (pVAX-FI-Mock) developed primary lesions. All mock controls developed recurrent lesions through day 100 postchallenge. Only 1 guinea pig in the group primed with pVAX DNA and boosted with FI-HSV2 (pVAX-FI-HSV2 group) and 2 guinea pigs in the group primed with UL5, UL30, and gD2t DNAs and boosted with FI-HSV2 (UL5, UL30, gD2t DNA-FI-HSV2 group) developed recurrent lesions. Strikingly, the UL5, UL30, gD2t DNA-FI-HSV2 group showed a 97% reduction in recurrent lesion days compared with the mock controls, had the highest reduction in days with recurrent disease, and contained the lowest mean HSV-2 DNA load in the dorsal root ganglia.  相似文献   

8.
A study was undertaken to compare the host immune responses to herpes simplex virus 1 (HSV-1) and HSV-2 infection by the ocular or genital route in mice. Titers of HSV-2 from tissue samples were elevated regardless of the route of infection. The elevation in titers of HSV-2, including cell infiltration and cytokine/chemokine levels in the central nervous system relative to those found following HSV-1 infection, was correlative with inflammation. These results underscore a dichotomy between the host immune responses to closely related alphaherpesviruses.  相似文献   

9.
10.
Trichosanthin (TCS) is a type I ribosome-inactivating protein that inhibits the replication of both human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus type 1 (HSV-1). The mechanism of inhibition is not clear. This investigation explored the effects of TCS on the stages of HSV-1 infection in Hep-2 cells, from attachment to release. We demonstrated that TCS reduced HSV-1 antigen and DNA content and interfered with viral replication as early as 3-15 h after infection. TCS had no effect on HSV-1 attachment, penetration or immediate-early gene expression. However, the expression of early and late genes and virion release were diminished. In summary, this study demonstrates that TCS primarily affects HSV-1 replication in Hep-2 cells during the early to late infection period.  相似文献   

11.
12.
13.
Summary The serum groups Gm(1) [Gm(a)], Gm(2) [Gm(x)], Gm(4) [Gm(f)]. Gm(12) [Gm(b)] and Inv(1) [Inv(1)] of 2000 sera of healthy blood donors from the land Hesse were examined. The results obtained were compared with those known until now. Three persons, not related to each other, possessed the extremely rare phenotype Gm(-1, 2, 4, 12) [Gm (a-x+b+f+)]. In 0.75% of the cases we found a discordant behaviour of the factors Gm(4) and Gm(12) [Gm(f) and Gm(b)].
Zusammenfassung 2000 Seren von gesunden Blutspendern aus Hessen wurden bezüglich der Gamma-Globulin-Serumgruppen Gm(1) [Gm(a)], Gm(2) [Gm(x)], Gm(4) [Gm(f)]. Gm(12) [Gm(b)] und Inv(1) [Inv(1)] untersucht. Die gefundenen Resultate wurden mit den bisher bekannten verglichen. Drei miteinander nicht verwandte Personen wiesen den äußerst seltenen Phänotyp Gm(-1, 2, 4, 12) [Gm(a-x+b+f+)] auf. In 0.75% der Fälle fanden wir ein diskordantes Verhalten der Faktoren Gm(4) und Gm(12) [Gm(f) und Gm(b)].


Director: Prof. Dr. W. Wachsmuth

Director: Prof. Dr. W. Spielmann

The nomenclature suggested by WHO at a round-table conference over genes, genotypes and allotypes of immunglobulins is used. The conference took place in Geneva on the 1965 31. 5. to the 5. 6. [5].

With technical assistance of S. Mohs.  相似文献   

14.
Dale M  Nicklin MJ 《Genomics》1999,57(1):177-179
The family of interleukin-1 receptor-like genes currently has six known members. We have constructed a contig of 10 overlapping human PAC clones that covers 530 kb and includes five of the six family members. The termini of the contig were mapped to the interval between D2S373 and D2S176 (chromosome 2q12) by radiation hybrid mapping. The contig contains the genes (cen --> tel), in the order given, for the type II interleukin-1 (IL-1) receptor (IL1R2), the type I IL-1 receptor (IL1R1), the IL-1 receptor-related protein 2 (IL1RL2), T1/ST2/fit-1 (IL1RL1), and the IL-1 receptor-related protein 1, which has recently been shown to be a component of the IL-18 receptor (IL18R1). We show that all the genes are transcribed in the same direction, with IL1R2 being transcribed toward the cluster. The only known family member that is absent from the human contig is the IL-1 receptor accessory protein gene (IL1RAP), which maps to 3q28.  相似文献   

15.
16.
R Ashley  A Wald    L Corey 《Journal of virology》1994,68(8):5284-5286
Herpes simplex virus (HSV)-specific immunoglobulin A, immunoglobulin G, and secretory-component-containing immunoglobulins were identified in cervical and salivary secretions from six subjects with oral HSV type 1 (HSV-1) infections. Anamnestic cervical and salivary antibody responses were detected in two HSV-1-seropositive women with newly acquired genital HSV-2 infections. These data implicate the common mucosal immune system in antibody responses to HSV.  相似文献   

17.
18.
19.
The genes for three convertases, PC1 (Nec-1), PC2 (Nec-2), and furin (Fur), have been regionally localized on chromosomes 13, 2, and 7, respectively, by interspecific backcross analysis. These results refine previous localizations by in situ hybridization as well as confirm and extend known regions of homology between mouse and human chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号