首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
In the past decade, striking advances have been made in the field of gene introducing/disrupting technology including generation of transgenic and knockout mice, which have enabled us to elucidate roles of specific genes in development. In this technology, embryos introduced with exogenous genes or chimeric embryos aggregated/injected with embryonic stem (ES) cells carrying targeted genes are allowed to develop in the uterus of foster mothers. The uterus, however, is like a black box for researchers investigating postimplantation development of mammalian embryos. Embryo culture is one of the powerful techniques that can open this black box. In this review, we focus on the applicable aspects of the whole embryo culture in the study of mammalian development and discuss the future possibilities of this technique.  相似文献   

3.
4.
Due to the internal nature of mammalian development, much of the research performed is of a static nature and depends on interpolation between stages of development. This approach cannot explore the dynamic interactions that are essential for normal development. While roller culture overcomes the problem of inaccessibility of the embryo, the constant motion of the medium and embryos makes it impossible to observe and record development. We have developed a static mammalian culture system for imaging development of the mouse embryo. Using this technique, it is possible to sustain normal development for periods of 18-24 h. The success of the culture was evaluated based on the rate of embryo turning, heart rate, somite addition, and several gross morphological features. When this technique is combined with fluorescent markers, it is possible to follow the development of specific tissues or the movement of cells. To highlight some of the strengths of this approach, we present time-lapse movies of embryonic turning, somite addition, closure of the neural tube, and fluorescent imaging of blood circulation in the yolk sac and embryo.  相似文献   

5.
The ultrastructure of bovine embryos developed from in vitro‐matured and ‐fertilized oocytes, cocultured with bovine cumulus/granulosa cells either in a serum‐free medium (IVMD101) or in a serum‐containing medium (TCM199+CS) was compared. Embryos up to the eight‐cell stage had many cellular organelles and cytoplasmic components that were randomly distributed in the cytoplasm. Mitochondria were spherical or ovoid and had only a few peripheral cristae. There were no obvious differences in the ultrastructure between embryos developed in IVMD101 and TCM199+CS up to the eight‐cell stage. However, conspicuous differences in the ultrastructural features between the embryos cultured in IVMD101 and TCM199+CS were observed at the morula and blastocyst stages. At the morula stage, embryos cultured in IVMD101 had cells containing elongated mitochondria, well‐developed Golgi apparatus, lipid droplets, and large vesicles resembling lysosomes. The lysosome‐like vesicles were partially filled with electron‐dense materials and were frequently fused with lipid droplets. The blastomeres of morulae cultured in TCM199+CS contained numerous large lipid droplets and fewer lysosome‐like vesicles than those cultured in IVMD101. In blastocysts cultured in IVMD101, lysosome‐like vesicles were frequently observed in the trophoblast cells and lipid droplets were present in the cytoplasm of trophoblast and inner cell mass (ICM)‐cells, but they were not abundant. On the other hand, the blastocysts developed in TCM199+CS contained fewer lysosome‐like vesicles and large numbers of lipid droplets. This accumulation of lipid droplets was higher in the trophoblast cells than in the ICM‐cells. This study showed major differences in the ultrastructural features between the morulae and blastocysts from serum‐free and serum‐supplemented cultures, suggesting that the ultrastructural differences may reflect physiological characteristics of embryos. Mol. Reprod. Dev. 53:325–335, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
Summary A culture model is described for the study of acetaldehyde (AcH) metabolism by explanted postimplantation rat and mouse conceptuses. The ability of 12-d rat and 10-d mouse embryos to metabolise AcH was demonstrated. The elimination rate for the 12-d rat conceptus using an initial AcH concentration of 1 mM in the medium was found to be 1.8 nmol/mg per minute. When the conceptus was divided into embryonic and extraembryonic tissue, the rates were 1.6 and 2.2 nmol/mg per minute, respectively. When the AcH concentration was reduced to 50 μM the rate was 0.095 nmol/mg per minute. The results provide further evidence for a functional barrier that prevents AcH entry to the embryo. A comparative experiment using CBA/beige mouse conceptuses showed that AcH elimination characteristics may be qualitatively similar to those in rat embryos, but that the estimated elimination rate of 0.8 nmol/mg per minute was less than half that of the rat. Thus the “metabolic barrier” may be less efficient in the mouse. This may be important in view of the greater sensitivity of the mouse to ethanol embryotoxicity. The work was supported by the King Edward Memorial Hospital Research Foundation and the Raine Research Foundation.  相似文献   

7.
Embryo transfer experiments were carried out to study the developmental capacity of cultured rabbit embryos when transferred to recipients of variable postovulatory maturity. Rabbit embryos were flushed from the oviduct at 26 hours postcoitum (pc) and cultured in a modified Ham's F-10 medium supplemented with bovine serum albumin (BSA) for a period of 70 hours. At 96 hours pc the cultured embryos, which ranged from the early morula to the expanding blastocyst stage, were transferred to pseudopregnant recipients mated to vasectomized males 36 to 96 hours prior to the transfer procedure. Greatest embryo survival occurred when transfers were made to either the oviducts or uterine horns of recipients at 48 hours pc. Intermediate results for both implantation rates and number of young born were obtained with recipients at 36, 60, 72, and 84 hours pc. Transferred embryos consistently failed to survive the uterine environment of recipients 96 hours pc at transfer although this group was synchronous with embryonic chronological age. Oviductal transfers were generally more successful than uterine transfers. Markedly higher rates of embryo survival resulted from embryos that were collected 60 and 72 hours pc and transferred directly to synchronous recipients without an interim period of culture. Dissimilarity of development for in vivo grown rabbit embryos and those cultured in synthetic medium is demonstrated.  相似文献   

8.
9.
The development of artificial means to conserve some endangered avian species seems urgently needed. We devised an eggshell‐less embryo culture system for embryogenesis using chicken or quail embryos as a model system. As a result, 41/56 (73%) chicken embryos and 52/62 (83%) quail embryos with their own thick albumen developed as usual for 72 and 55 hr, respectively, using a Teflon membrane (Milliwrap) and an egg‐shaped plastic vessel. Furthermore, this study revealed that the most suitable vessel for culture would have the same size as the intact original eggshell. This technique opens the way for the rescue of endangered avian species even if their eggshells are abnormal or cracked. This new procedure also facilitates investigation of developmental events in many unknown birds. We discuss various aspects of the embryological techniques applicable to endangered avian species. Zoo Biol 00:000–000, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

10.
Mammalian whole embryo culture (WEC) was developed long before transgenic and gene targeted animals are widely used. Electroporation (EP) into cultured rodent embryos has expanded the potential to analyze gene functions in mammalian embryos by transferring exogenous plasmid vectors or small nucleotides in region- and stage-specific ways. This method is quite simple, and therefore enables us to analyze gene functions more quickly than genetic manipulation. In this review, we introduce combinatorial methods of WEC and EP, and summarize various applications in developmental neurobiology.  相似文献   

11.
12.
Current in vitro culture methods for mouse embryos are critically dependent on specially prepared rodent serum. Rodent serum requires careful preparation and stringent assessment of serum quality, while commercially available whole embryo culture serum is expensive and shows considerable lot variability. Thus, preparation and testing of suitable serum represents a considerable investment of time and resources, particularly for laboratories with only short-term embryo culture requirements. In addition, serum supplementation of culture medium may introduce unknown serum components that could interfere with interpretation of experimental results, especially where the study is geared towards analysis of a specific growth factor. Here we describe the composition of a standardized serum free culture medium comprised of commercially available stem cell media supplements. With this method, we have successfully cultured midgestation stage mouse embryos and demonstrated, using both morphological and gene expression criteria, that these embryos exhibited proper developmental progression. We believe this method to be a significant advance in whole embryo culture technology that will be of particular use to laboratories needing to utilize whole embryo culture to study midgestation organogenesis.  相似文献   

13.
BACKGROUND: The rodent whole embryo culture (WEC) system is a well‐established model for characterizing developmental toxicity of test compounds and conducting mechanistic studies. Laboratories have taken various approaches in describing type and severity of developmental findings of organogenesis‐stage rodent embryos, but the Brown and Fabro morphological score system is commonly used as a quantitative approach. The associated score criteria is based upon developmental stage and growth parameters, where a series of embryonic structures are assessed and assigned respective scores relative to their gestational stage, with a Total Morphological Score (TMS) assigned to the embryo. This score system is beneficial because it assesses a series of stage‐specific anatomical landmarks, facilitating harmonized evaluation across laboratories. Although the TMS provides a quantitative approach to assess growth and determine developmental delay, it is limited to its ability to identify and/or delineate subtle or structure‐specific abnormalities. Because of this, the TMS may not be sufficiently sensitive for identifying compounds that induce structure or organ‐selective effects. METHOD: This study describes a distinct morphological score system called the “Dysmorphology Score System (DMS system)” that has been developed for assessing gestation day 11 (approximately 20–26 somite stage) rat embryos using numerical scores to differentiate normal from abnormal morphology and define the respective severity of dysmorphology of specific embryonic structures and organ systems. This method can also be used in scoring mouse embryos of the equivalent developmental stage. RESULT AND CONCLUSION: The DMS system enhances capabilities to rank‐order compounds based upon teratogenic potency, conduct structure‐ relationships of chemicals, and develop statistical prediction models to support abbreviated developmental toxicity screens. Birth Defects Res (Part B) 89:485–492, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The functional role of the mucin layer for development of rabbit embryos was examined by uterine transfer of embryos with different thicknesses of mucin. Embryos collected at various intervals after human chorionic gonadotropin (hCG) injection were cultured until 90 hr post-coitum (p.c.) and transferred to the uterus of synchronized recipients. When embryos collected at 20 or 25 hr p.c. were used for transfer, no implantation occurred. By contrast, embryos collected at 35 or 40 hr p.c. developed to term at high rates (53 and 80%, respectively). The thickness of the mucin layer on the embryos was different between these two groups. Embryos collected before 25 hr p.c. have less than 11.2 ± 0.2 μm of thickness of mucin and embryos collected after 35 hr p.c. have more than 34.3 ± 5.5 μm. To examine whether mucin deposition is required for in vitro cultured rabbit blastocysts to continue development after uterine transfer, embryos were collected at 20 hr p.c., cultured for 60 or 70 hr in vitro, and then temporarily transferred to the oviducts of recipient does to add mucin. These embryos were recovered from the oviducts at 24 hr after transfer, classified according to the thickness of mucin deposition, and transferred again to the uterus of synchronized recipients. Twenty live young were obtained from 67 embryos with a 20–40 μm thick mucin layer. No live young were obtained from 57 embryos with less than a 20 μm thick mucin. The thickness of the mucin layer appears to be an important factor for successful implantation of rabbit embryos. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Embryonic development of in-vitro fertilized rabbit ova was assessed following in-vitro culture in four different serum supplemented media. A mixture of Basal Medium Eagle (BME) and Ham's F10 medium (1:1) provided better support for in-vitro development than Ham's F10, BME, or regular acidic saline (RAS). In-vitro embryonic development in the BME/Ham's F10 mixture was synchronous with in-vivo development through at least 55 hr of culture. After 54 hr of culture, embryos transferred to the oviduct of a synchronous pseudopregnant recipient were able to implant at the same rate as simultaneously transferred embryos grown in vivo. BME/Ham's F10 supplemented with 10% newborn calf serum was highly supportive of rabbit embryo development following in-vitro fertilization.  相似文献   

16.
Rabbit 2-cell embryos were co-cultured in Basel Synthetic Medium II + 10% fetal bovine serum with one of the following: primary cultures of rabbit oviduct epithelial cells (ROEC), a rabbit kidney epithelioid cell line (RK13), a rabbit epidermal epithelioid cell line (Sf1), or a rabbit skin fibroblast-like cell line (RAB9). Embryos cultured in medium alone served as controls. After 4 d of culture at 39 degrees C in 5% CO2 in air, 77-93% of the rabbit embryos which were co-cultured with somatic cells had reached the blastocyst stage, and 60-76% were hatching through their zonae pellucidae. These percentages, however, were not significantly different (P greater than .05) from those of embryos in medium alone, of which 90% had reached the blastocyst stage and 83% were hatching. Mean intrazonal embryo diameters also did not differ significantly among treatments (239-302 microns). Bovine 1-8-cell embryos were also co-cultured with ROEC. This stimulated 60% of these embryos to develop beyond the so-called "16-cell block" in vitro, whereas 0% of the embryos cultured in medium alone developed past this block. Evaluation of the ROEC cultures by light microscopy, immunocytochemistry, and gel electrophoretic analysis of conditioned medium, together with the positive results with bovine embryos, indicate that the ROEC culture partially simulates oviductal conditions in vivo. Therefore, our results suggest that oviduct epithelial cells may play a less pivotal role in regulating early development in the rabbit than in the cow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Short, hairpin RNA (shRNA) directed against bone morphogenetic protein 4 (Bmp-4) was delivered to early postimplantation staged mouse embryos via tail vein injection of pregnant dams. As early as 24 h postinjection, embryos expressed a DsRed marker and later exhibited defects of neural fold elevation and closure and of cardiac morphogenesis. Immunohistochemical analysis of sectioned embryos indicated that Bmp-4 protein was depleted and gene expression analysis indicated there was a reduction in Bmp-4 mRNA and an upregulation of the Bmp-4 antagonists, noggin and chordin, in embryos exposed to the shRNA, but not in control embryos. There was no change in the expression of Gata4, brachyury, or claudin6 in RNAi exposed embryos, indicating that RNA silencing was specific to Bmp-4 rather than producing widespread gene inhibition. Delivery of shRNA to embryos has the potential to specifically knockdown the expression of developmentally essential genes and to rescue gene mutations, significantly decreasing the time required to analyze the function(s) of individual genes in development.  相似文献   

18.
Rabbit morulae and blastocysts were cultured in conventional culture media [Ham’s F10 or BSM II supplemented with bovine serum albumin (BSA) or serum] or in Ham’s medium supplemented with synchronous or asynchronous uterine flushings, mostly for 2 days, and afterwards investigated by light and electron microscopy and by autoradiography. Ultrastructure and cell proliferation differed considerably between cultured embryos and noncultured controls. Cultured embryos displayed more dead cells. They were developmentally retarded (predominance of smooth endoplasmic reticulum rather than the age-specific rough endoplasmic reticulum, mitochondria still round to ovoid shaped) and showed nonspecific signs of cells damage (swollen mitochondria and Golgi complex vesicles, increased number of lysosomes). All these features were also present in embryos grown in uterine flushing-supplemented media, but were less pronounced. Cell damage and impaired cell proliferation had affected trophoblast cells more than embryoblast cells. Endoderm could be differentiated only if culture had been started with blastocysts—not with morulae—and seems to require uterine secretions. No significant ultrastructural differences were observed between embryos cultured in synchronous or in asynchronous uterine flushings. Present results indicate that cultured preimplantation rabbit embryos deviate clearly from those grown in vivo and maintain, for some time, a better cellular structure—and probably function —in the presence of uterine flushings than in conventional culture media. Specific abnormal morphologic features related to a particular medium could not be identified.  相似文献   

19.
BACKGROUND: Previous work has shown that teratogens such as hyperthermia (HS), 4-hydroperoxycyclophosphamide (4CP), and staurosporine (ST) induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway. Key to the activation of this pathway is the activation of a caspase cascade involving the cleavage-induced activation of an initiator procaspase, caspase-9, and the downstream effector procaspase, caspase-3. For example, procaspase-3, an inactive proenzyme of 32 kDa is cleaved by activated caspase-9 to generate a large subunit of approximately 17 kDa and a small subunit of approximately 10 kDa. In turn, caspase-3 is known to target a variety of cellular proteins for proteolytic cleavage as part of the process by which dying cells are eliminated. Previous work has also shown that neuroepithelial cells are sensitive to teratogen-induced activation of this pathway and subsequent cell death whereas cells of the heart are resistant. Although caspase-3 is a key effector caspase activated by teratogens, two other effector caspases, caspase-6 and caspase-7, are known; however, their role in teratogen-induced cell death is unknown. METHODS: Because cleavage-induced generation of specific subunits is the most specific assay for activation of caspases, we have used antibodies that recognize the procaspase and one of its active subunits and a Western blot approach to assess the activation of caspase-6 and caspase-7 in day 9 mouse embryos (or heads, hearts and trunks isolated from whole embryos) exposed to HS, 4CP, and ST. To probe the relationship between teratogen-induced activation of caspase-9/caspase-3 and the activation of caspase-6/caspase-7, we used a mitochondrial-free embryo lysate with or without the addition of cytochrome c, recombinant active caspase-3, or recombinant active caspase-9. RESULTS: Western blot analyses show that these three teratogens, HS, 4CP, and ST, induce the activation of procaspase-6 (appearance of the 13 kDa subunit, p13) and caspase-7 (appearance of the 19 kDa subunit, p19) in day 9 mouse embryos. In vitro studies showed that both caspase-6 and caspase-7 could be activated by the addition of cytochrome c to a lysate prepared from untreated embryos. In addition, caspase-6 could be activated by the addition of either recombinant caspase-3 or caspase-9 to a lysate prepared from untreated embryos. In contrast, caspase-7 could be activated by addition of recombinant caspase-3 but only minimally by recombinant caspase-9. Like caspase-9/caspase-3, caspase-6 and caspase-7 were not activated in hearts isolated from embryos exposed to these three teratogens. CONCLUSIONS: HS, 4CP and ST induce the cleavage-dependent activation of caspase-6 and caspase-7 in day 9 mouse embryos. Results using DEVD-CHO, a caspase-3 inhibitor, suggest that teratogen-induced activation of caspase-6 is mediated by caspase-3. In addition, our data suggest that caspase-7 is activated primarily by caspase-3; however, we cannot rule out the possibility that this caspase is also activated by caspase-9. Finally, we also show that teratogen-induced activation of caspase-6 and caspase-7 are blocked in the heart, a tissue resistant to teratogen-induced cell death.  相似文献   

20.
In vitro developmental model systems have been an important tool for advancing basic research in the embryology and teratology fields. The rat and zebrafish embryo models have had broad utility in both fields for many decades. Furthermore embryonic stem cells, applied as a basic research tool, have broad applications across the development fields and many other fields including cancer, regeneration and epigenetic research. These models have historically been applied in mechanistic studies but were also considered promising for evaluating teratogenic potential of test substances. In recent years, in vitro teratogenicity assays have become an area of interest for supporting the 3 Rs (reduction, refinement, and replacement of animal use). Generation of such assays also provides a means to facilitate early assessment of test agents at a higher throughput without excessive use of animals. In this review, the three models are described with an emphasis of how they are being developed and/or refined to support teratogenicity assessment as screening tools. An overview of the state of the science and future directions are described. Birth Defects Research (Part C) 90:87–98, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号