首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been studied whether 2,5-dimethylfuran (DMF) is a specific 1O2 trapping agent in aqueous system. The exposure of DMF to aqueous 1O2 generating system (Rose Bengal photooxygenation system) gave 2-hydroxy-5-hydroperoxy-2,5-dimethyldihydrofuran (a hydrated form of endoperoxide, 1O2-derived reaction product) and cis-diacetylethylene (cis-DAE), while the bromine-catalyzed autoxidation of DMF afforded only trans-DAE. In Fenton system (·OH generating system) DMF was converted in the main to cis-DAE, but not to the hydrated form of endoperoxide. The exposure of DMF to acetaldehyde-xanthine oxidase system failed to detect the hydrated form of endoperoxide, but chiefly yielded a non-specific oxidation product, cis-DAE.  相似文献   

2.
The possible protective role of endogenous isoprene against oxidative stress caused by singlet oxygen (1O2) was studied in the isoprene‐emitting plant Phragmites australis. Leaves emitting isoprene and leaves in which isoprene synthesis was inhibited by fosmidomycin were exposed to increasing concentrations of 1O2 generated by Rose Bengal (RB) sensitizer at different light intensities. In isoprene‐emitting leaves, photosynthesis and H2O2 and malonyldialdehyde (MDA) contents were not affected by low to moderate 1O2 concentrations generated at light intensities of 800 and 1240 µmol m?2 s?1, but symptoms of damage and reactive oxygen accumulation started to be observed when high levels of 1O2 were generated by very high light intensity (1810 µmol m?2 s?1). A dramatic decrease in photosynthetic performance and an increase in H2O2 and MDA levels were measured in isoprene‐inhibited RB‐fed leaves, but photosynthesis was not significantly inhibited in leaves in which the isoprene leaf pool was reconstituted by fumigating exogenous isoprene. The inhibition of photosynthesis in isoprene‐inhibited leaves was linearly associated with the light intensity and with the consequently formed 1O2. Hence, physiological levels of endogenous isoprene may supply protection against 1O2. The protection mechanisms may involve a direct reaction of isoprene with 1O2. Moreover, as it is a small lipophilic molecule, it may assist hydrophobic interactions in membranes, resulting in their stabilization. The isoprene‐conjugated double bond structure may also quench 1O2 by facilitating energy transfer and heat dissipation. This action is typical of other isoprenoids, but we speculate that isoprene may provide a more dynamic protection mechanism as it is synthesized promptly when high light intensity produces 1O2.  相似文献   

3.
Lidocaine, a local anaesthetic, has been shown to reduce ventricular arrhythmias associated with myocardial infarction and ischemic myocardial injury and its protective effects has been attributed to its membrane stabilizing properties. Since oxygen radicals are known to be produced during ischemia induced tissue damage, we have investigated the possible antioxidant properties of lidocaine and found that lidocaine does not scavenge 02 · radicals at 1 to 20 mM concentrations. However, lidocaine was found to be a potent scavenger of hydroxyl radicals and singlet oxygen. Hydroxyl radicals were produced in a Fenton type reaction and detected as DMPO-OH adducts by electron paramagnetic resonance spectroscopic techniques. Lidocaine inhibited DMPO-OH adduct formation in a dose dependent manner. The amount of lidocaine needed to cause 50% inhibition of that rate was found to be approximately 80 M and at 300 M concentration it virtually eliminated the DMPO-OH adduct formation. The production of OH-dependent TBA reactive products of deoxyribose was also inhibited by lidocaine in a dose dependent manner. Lidocaine was also found to inhibit the 1O2-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation in a dose dependent manner. 1O2 was produced in a photosensitizing system using Rose Bengal or Methylene Blue as photosensitizers and was detected as TEMP-1O2 adduct by EPR spectroscopy. The amount of lidocaine required to cause 50% inhibition of TEMP-1O2 adduct formation was found to be 500 M. These results suggest that the protective effect of lidocaine on myocardial injury may, in part, be due to its reactive oxygen scavenging properties. These results may also explain the membrane stabilizing actions of lidocaine by scavenging OH · and 1O2 that are implicated in membrane lipid peroxidation.  相似文献   

4.
Abstract

We previously reported that irradiation of titanium dioxide (TiO2) in ethanol generates both singlet oxygen (1O2) and superoxide anion (O2·-) as measured by EPR spectroscopy. The present study describes the production of reactive oxygen species upon irradiation of TiO2 in aqueous suspension as determined by EPR spectroscopy using 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TMP) and 5,5- dimethyl-pyrroline-N-oxide (DMPO). Photoproduction of 1O2 by suspended TiO2, detected as 2,2,6,6-tetramethyl-4-piperidone-N-oxyl (4-oxo-TEMPO), was measured in water and deuterium oxide (D2O) in the presence or absence of sodium azide (NaN3) and under air or argon atmospheres. Production of a DMPO-OH adduct was examined in 4-oxo-TMP containing medium in the presence or absence of dimethyl sulfoxide (DMSO). The signal for the DMPO spin adduct of superoxide anion was not observed in aqueous conditions. Kinetic analysis revealed that 1O2 was produced at the surface of irradiated TiO2 in aqueous suspension as was observed in ethanol. Kinetic analysis revealed that the formation of DMPO-OH adduct reflects oxidation of DMPO by 1O2 rather than the trapping of the hydroxyl radical produced by the reaction of photo-exited TiO2 and water. The production of large amounts of 1O2 by TiO2 in aqueous suspension as compared to those in ethanol and possible formation of hydroxyl radical in aqueous suspension but not in alcohol, suggest that irradiation of TiO2 in aqueous environments is biologically more important than that in non-aqueous media.  相似文献   

5.
Oxygen radical scavengers have been shown to prevent the development of ischemic preconditioning, suggesting that reactive oxygen species (ROS) might be involved in this phenomenon. In the present study, we have investigated whether direct exposure to ROS produced by photoactivated Rose Bengal (RB) could mimic the protective effects of ischemic preconditioning.

Methods In vitro generation of ROS from photoactivated RB in a physiological buffer was first characterised by ESR spectroscopy in the presence of 2,2,6,6-tetramethyl-1-piperidone (oxoTEMP) or 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In a second part of the study, isolated rat hearts were exposed for 2.5 min to photoactivated RB. After 5 min washout, hearts underwent 30 min no-flow normothermic ischemia followed by 30 min of reperfusion.

Results and Conclusions The production of singlet oxygen (1O2) by photoactivated RB in the perfusion medium was evidenced by the ESR detection of the nitroxyl radical oxoTEMPO. Histidine completely inhibited oxoTEMPO formation. In addition, the use of DMPO has indicated that (i) superoxide anions (O·-2) are produced directly and (ii) hydroxyl radicals (HO·) are formed indirectly from the successive O·-2 dismutation and the Fenton reaction. In the perfusion experiments, myocardial post-ischemic recovery was dramatically impaired in hearts previously exposed to the ROS produced by RB photoactivation (1O2, O·-2, H2O2 and HO·) as well as when 1O2 was removed by histidine (50 mM) addition. However, functional recovery was significantly improved when hearts were exposed to photoactivated RB in presence of superoxide dismutase (105 IU/L) and catalase (106 IU/L).

Further studies are now required to determine whether the cardioprotective effects of Rose Bengal in presence of O·-2 and H2O2 scavengers are due to singlet oxygen or to other species produced by Rose Bengal degradation.  相似文献   

6.
The HOCl in chlorine-water oxidizes DPF to cis-DBE in parallel to the HOCl concentration. The addition of H2O2 produces singlet molecular oxygen, and a bimol collision above pH 6.0, but not in the pH region 3.0 to 4.0. The DPF conversion to cis-DBE is initiated by a 1,2-position attack of OH? and Cl+, followed by the HCl elimination. The oxidation potency of HOCl is much greater than the singlet molecular oxygen generated in chlorine-water/H2O2 solution, on the pH range 6.0 to 8.0 where both HOCl and OCl? are present.  相似文献   

7.
The estimated light emission spectrum was determined for a singlet oxygen (1O2)-producing system, NaOCl + H2O2, alone and in the presence of tryptophan and bovine serum albumin. Tryptophan and bovine serum albumin caused a decrease in the red emission of 1O2 and an increase in the amount of shorter wavelength light. This effect was due to chemiluminescence rather than fluorescence. Arachidonic acid caused a similar spectral shift, while guanosine demonstrated a late chemiluminescent reaction of predominantly short wavelength light in the presence of 1O2.  相似文献   

8.
AimsProtective effects of edaravone, an approved medicine for acute brain infarction in Japan, on cell death induced by singlet oxygen (1O2) were examined.Main methodThe 1O2 scavenging activity was examined by direct analysis of near-infrared luminescence in a cell-free system and by fluorospectrometry in the presence of cells. The protective effects of edaravone on 1O2-induced cell death were examined, using rat neuronal B50 cells. Cell death was evaluated by mitochondrial respiration (MTT assay), confocal microscopy and time-lapse imaging. The chemical reaction of edaravone with 1O2 was examined by production analysis using high performance liquid chromatography (HPLC).Key findingsWhen rose Bengal (RB) in D2O was irradiated by a 514 nm laser beam, the signal of 1O2 was observed. Edaravone suppressed the 1O2 signal more potently than azide, a 1O2 scavenger. When B50 cells were irradiated by 525 nm green light in the RB solution, production of 1O2 and induction of cell death were observed. The fluorospectrometric study and the MTT assay revealed that 100–400 µM edaravone suppressed the 1O2 production and attenuated cell death in a concentration-dependent manner. Confocal microscopy and the time-lapse imaging revealed that edaravone prevented the impairment of membrane integrity and the progression of cell death induced by 1O2. The HPLC study revealed that edaravone chemically reacted with 1O2 and changed another compound.SignificanceSince 1O2 is possibly involved in post-ischemic neuronal damage, the clinically approved curative effects of edaravone on acute brain infarction might be attributed to its potent 1O2 scavenging activity.  相似文献   

9.
Felix Buchert 《FEBS letters》2010,584(1):147-152
Singlet oxygen (1O2) produced in plants during photosynthesis has a strong damaging effect not only on both photosystems but also on the whole photosynthetic machinery. This is also applicable for the adenosine triphosphate (ATP) synthase. Here we describe the impact of 1O2 generated by the photosensitizer Rose Bengal on the ATP hydrolysis and ATP-driven proton translocation activity of CF1CFo. Both activities were reduced dramatically within 1 min of exposure. Interestingly, it is shown that oxidized thylakoid ATP synthase is more susceptible to 1O2 than CF1CFo in its reduced state, a new insight on the mechanism of 1O2 interaction with the γ subunit.  相似文献   

10.
Chlorophyll-sensitized photooxidation of indoleacetic acid (IAA)—with chlorophyll extracted from Pisum sativum L. cv. Alaska W.R.—was determined in the presence of deuterium oxide and known quenchers of singlet oxygen (1O2) to explore the involvement of 1O2 in the reaction. O2 uptake was measured in light in a buffered aqueous micellar system containing Triton X-100, KCl, chlorophyll, and IAA. The rate of O2 uptake was zero in darkness. The reaction was stimulated by deuterium oxide and inhibited by sodium azide indicating that 1O2 participated in IAA photooxidation. Both mannitol and superoxide dismutase failed to inhibit O2 uptake suggesting that neither the hydroxyl radical nor the superoxide anion played a significant role in the reaction.  相似文献   

11.
The rate constants for [1O2] [MCLA] and [1O2][NaN3] were measured by quenching the near-infrared emission (1Δg3g) in steady state with MCLA and NaN3, respectively. 1O2 was constantly generated by energy transfer to O2 from Ar laser-excited Rose Bengal. The Stern—Volmer plots yielded the second-order rate constants of 2.94 × 109 M?1 S?1 and 3.83 × 108 M?1 S?1 for quenching 1O2 with MCLA and NaN3 in water at pH 5.4, respectively. The 1O2 + MCLA reaction emitted light with maximum at 465 nm at pD 4.5 identical to the O2? + MCLA reaction.  相似文献   

12.
The ability of D-α-tocopherol to act as a quencher of 1O2 (singlet oxygen) was tested with a biological source of 1O2, namely the phagocytosis activated myeloperoxidase contained in the homogenate of human circulating polymorphonuclear leukocytes.With this system, the 1O2 quenching efficiency of exogenously added D-α-tocopherol was estimated from its inhibitory effect on the luminol amplified chemiluminescence. This inhibitory effect was dose dependent. D-α-tocopherol was also efficient in quenching the chemiluminescence generated through the H2O2-horseradish system. In both systems the quenching effect may be almost entirely “physical”, since very little tocopherol was destroyed when compared to the relatively large amount of H2O2 consumed.  相似文献   

13.
Phycobiliproteins (PBPs) are a type of promising sensitizers for photodynamic therapy (PDT). Upon irradiation (λ>500nm) of an oxygen-saturated aqueous solution of phycobiliproteins, particularly, C-phycocyanin (C-PC), allophycocyanin (APC) or R-phycoerythrin (R-PE), the formation of singlet oxygen (1O2) was detected by using imidazole in the presence of p-nitrosodimethylaniline (RNO). The bleaching of RNO caused by the presence of imidazole in our system showed typical concentration dependence with a maximum at about 8mM imidazole, which is in agreement with the formation of 1O2. In addition, the generation of 1O2 was verified further in the presence of D2O and specific singlet oxygen quencher — 1,4-diazabicyclo [2,2,2] octane (DABCO) and sodium azide (NaN3). Our experimental results indicated that APC possesses high ability to generate reactive oxygen species and the relative quantum yields of photogeneration of 1O2 by PBPs are as follows: APC > C-PC > R-PE.  相似文献   

14.
Singlet oxygen (1O2) has been shown to play an important role in salivary defense system, but its generation process and level from human saliva remain uncertain due to the lack of a reliable detection method. We have previously reported 4,4′(5′)-bis[2-(9-anthryloxy)ethylthio]tetrathiafulvalene (BAET) as a novel chemiluminescence probe for 1O2. In this work, the probe is successfully used to characterize H2O2-dependent generation of 1O2 from saliva in real time. However, the yield of 1O2 is found to be very low, for example, being about 0.13 nmol from 200 μL saliva in the presence of 1 mM of hydrogen peroxide over a 5-s reaction period. The result is also compared with that obtained with another 1O2 probe 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-one (CLA), demonstrating that, besides 1O2, the other reactive oxygen species such as hydroxyl radical may also be involved in the reaction of saliva with H2O2. Furthermore, the present study shows that the selectivity of BAET for 1O2 is much higher than that of CLA and thus BAET is highly suited for the detection of 1O2 in the presence of other reactive oxygen species in biological systems.  相似文献   

15.
We report a high light-throughput spectroscopic dosimeter system that is able to noninvasively measure luminescence signals of singlet oxygen (1O2) produced during photodynamic therapy (PDT) using a CW (continuous wave) light source. The system is based on a compact, fiber-coupled, high collection efficiency spectrometer (>50% transmittance) designed to maximize optical throughput but with sufficient spectral resolution (~7 nm). This is adequate to detect 1O2 phosphorescence in the presence of strong luminescence background in vivo. This system provides simultaneous acquisition of multiple spectral data points, allowing for more accurate determination of luminescence baseline via spectral fitting and thus the extraction of 1O2 phosphorescence signal based solely on spectroscopic decomposition, without the need for time-gating. Simultaneous collection of photons at different wavelengths improves the quantum efficiency of the system when compared to sequential spectral measurements such as filter-wheel or tunable-filter based systems. A prototype system was tested during in vivo PDT tumor regression experiments using benzoporphyrin derivative (BPD) photosensitizer. It was found that the treatment efficacy (tumor growth inhibition rate) correlated more strongly with 1O2 phosphorescence than with PS fluorescence. These results indicate that this high photon-collection efficiency spectrometer instrument may offer a viable option for real-time 1O2 dosimetry during PDT treatment using CW light.  相似文献   

16.
The possible involvement of singlet oxygen (1O2) in the degradation of lignin by Phanerochaetechrysosporium was examined. Ligninolytic cultures and photochemically generated 1O2 gave the same oxidation products from the lignin substructure model compound 1,2-bis(3-methoxy-4-alkoxyphenyl)propan-1,3-diol. Fluorescence and near UV absorbance of the specific 1O2 trapping agent anthracene-9,10-bisethanesulfonic acid (AES) disappeared in ligninolytic cultures, indicating that 1O2 was produced. AES strongly inhibited oxidation of 14C-lignin, but not 14C-glucose, to 14CO2 in cultures, and also strongly suppressed oxidation of the model compound. These results indicate the 1O2 plays an integral role in lignin biodegradation.  相似文献   

17.
Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O2(1Δg). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O2(1Δg) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high. O2(1Δg) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O2(1Δg) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data.  相似文献   

18.
The efficiency of photodynamic reactions depends on 1), the penetration depth of the photosensitizer into the membrane and 2), the sidedness of the target. Molecules which are susceptible to singlet oxygen (1O2) experience less damage when separated from the photosensitizer by the membrane. Since 1O2 lifetime in the membrane environment is orders of magnitude longer than the time required for nonexcited oxygen (O2) to cross the membrane, this observation suggests that differences between the permeabilities or membrane partition of 1O2 and O2 exist. We investigated this hypothesis by releasing 1O2 at one side of a planar membrane while monitoring the kinetics of target damage at the opposite side of the same membrane. Damage to the target, represented by dipole-modifying molecules (phloretin or phlorizin), was indicated by changes in the interleaflet dipole potential difference Δφb. A simple analytical model allowed estimation of the 1O2 interleaflet concentration difference from the rate at which Δφb changed. It confirmed that the lower limit of 1O2 permeability is ∼2 cm/s; i.e., it roughly matches O2 permeability as predicted by Overton's rule. Consequently, the membrane cannot act as a barrier to 1O2 diffusion. Differences in the reaction rates at the cytoplasmic and extracellular membrane leaflets may be attributed only to 1O2 quenchers inside the membrane.  相似文献   

19.
Luminescence of singlet oxygen dimols (1O2)2 was studied in aerobic solutions of a nonfluorescent photosensitizer phenalenone in CCl4 and C6F6 using a setup with a mechanical phosphoroscope and relatively low rates of photosensitizer excitation. The luminescence spectrum was found to resemble those reported in our previous papers dealing with dimol luminescence in solutions of porphyrins and other organic dyes. The main maximum was located at 703–706 nm, and two much weaker bands at 640 and 770–780 nm. These data suggest that dimol luminescence arises owing to interaction of two 1O2 molecules and one ground-state pigment molecule. Light is emitted by the dimol-pigment contact complexes, which are formed as a result of 1O2 collisions with metastable, probably triplet, intermediates appearing in 1O2 reaction with pigment molecules. It is proposed that this mechanism of dimol luminescence might be of general importance for photochemical, chemical, and biological systems where singlet oxygen is generated. However, the luminescence of this type dominates at relatively low rates of 1O2 generation. According to the literature data, at high 1O2 generation rates the prevalent type of dimol luminescence has the main maximum at 635–637 nm and is caused by direct collisions of two 1O2 molecules.  相似文献   

20.
The production of O2(a1Δg) singlet oxygen in non-self-sustained discharges in pure oxygen and mixtures of oxygen with noble gases (Ar or He) was studied experimentally. It is shown that the energy efficiency of O2(a1Δg production can be optimized with respect to the reduced electric field E/N. It is shown that the optimal E/N values correspond to electron temperatures of 1.2–1.4 eV. At these E/N values, a decrease in the oxygen percentage in the mixture leads to an increase in the excitation rate of singlet oxygen because of the increase in the specific energy deposition per O2 molecule. The onset of discharge instabilities not only greatly reduces the energy efficiency of singlet oxygen production but also makes it impossible to achieve high energy deposition in a non-self-sustained discharge. A model of a non-self-sustained discharge in pure oxygen is developed. It is shown that good agreement between the experimental and computed results for a discharge in oxygen over a wide range of reduced electric fields can be achieved only by taking into account the ion component of the discharge current. The cross section for the electron-impact excitation of O2(a1Δg and the kinetic scheme of the discharge processes with the participation of singlet oxygen are verified by comparing the experimental and computed data on the energy efficiency of the production of O2(a1Δg and the dynamics of its concentration. It is shown that, in the dynamics of O2(a1Δg molecules in the discharge afterglow, an important role is played by their deexcitation in a three-body reaction with the participation of O(3P) atoms. At high energy depositions in a non-self-sustained discharge, this reaction can reduce the maximal attainable concentration of singlet oxygen. The effect of a hydrogen additive to an Ar: O2 mixture is analyzed based on the results obtained using the model developed. It is shown that, for actual electron beam current densities, a significant energy deposition in a non-self-sustained discharge in the mixtures under study can be achieved due to the high rate of electron detachment from negative ions. In this case, however, significant heating of the mixture can lead to a rapid quenching of O2(a1Δg molecules by atomic hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号