首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Fluorescein-labeled heavy meromyosin subfragment-1 (F-S-1) has been purified by ion exchange chromatography and characterized in terms of its ability to bind specifically to actin. F-S-1 activates the Mg++-adenosine triphosphatase activity of rabbit skeletal muscle actin and decorates actin as shown by negative stains and thin sections of rabbit actin and rat embryo cell microfilament bundles, respectively. Binding of F-S-1 to cellular structures is prevented by pyrophosphate and by competition with excess unlabeled S-1. The F-S-1 is used in light microscope studies to determine the distribution of actin-containing structures in wnterphase and mitotic rat embryo and rat kangaroo cells. Interphase cells display the familiar pattern of fluorescent stress fibers. Chromosome-to-pole fibers are fluorescent in mitotic cells. The glycerol extraction procedures employed provide an opportunity to examine cells prepared in an identical manner by light and electron microscopy. The latter technique reveals that actin-like microfilaments are identifiable in spindles of glycerinated cells before and after addition of S-1 or HMM. In some cases, microfilaments appear to be closely associated with spindle microtubles. Comparison of the light and electron microscope results aids in the evaluation of the fluorescent myosin fragment technique and provides further evidence for possible structural and functional roles of actin in the mitotic apparatus.  相似文献   

4.
Summary A method has been developed to obtain synchronous populations from a human cell line which previously resisted the use of the selective harvest technique. A concentration of Colcemid was determined which reversibly enriched the mitotic population but avoided delays in cell cycle progression. Mitotic cells were then detached from monolayer cultures by brief treatment with hypotonic salt solutions. The resulting populations of line A244 were shown to be viable and syntchronous by following attachment efficiency and cycle time and by monitoring mitotic index and deoxyribonucleic acid synthesis. Hypotonic solutions offer no advantage in the selection of mitotic L-929 cells, a line commonly synchronized by selective harves. However, their use with both CV-1 and A244 cells provided large populations highly synchronized with respect to mitosis. This technique might be applied successfully to cell types which do not demonstrate a selective advantage at division.  相似文献   

5.
Mitotic activity in cells of the wool follicle bulb   总被引:1,自引:0,他引:1  
Mitotic activity in the cells of the germinative region of wool follicle bulbs was quantified by using small (0.1-0.5 ml) intradermal doses of colchicine and selective staining of the metaphase-blocked nuclei using either crystal violet, iodine and eosin or haematoxylin and eosin. The number of metaphase nuclei present 3 h after colchicine administration increased with colchicine dose from 0 to 1 microgram and thereafter remained relatively constant up to 200 micrograms colchicine. The accumulation of metaphase nuclei was linear for up to 6 h after intradermal colchicine. The metaphase-blocking effect of intradermal colchicine was confined to a radius of less than 5 cm from the injection site, allowing a number of estimates of mitotic rates to be made over a small area of skin. Such estimates revealed little variation in mitotic activity over the midside region of the sheep, although there were substantial differences in follicle activity at different sites over the body. The technique is simple, allows serial or concurrent estimates of mitotic activity to be made in the same animal, and eliminates problems associated with intravenous colchicine administration. It was used to derive the relationship between follicle activity and fibre production after nutritional changes, and to define the time course of mitotic events after administration of the antimitotic defleecing agent cyclophosphamide.  相似文献   

6.
Fluorescence activated cell sorting (FACS) analysis has become a standard tool to analyze cell cycle distributions in populations of cells. These methods require relatively large numbers of cells, and do not provide optimal resolution of the transitions between cell cycle phases. In this report we describe in detail complementary methods that utilize the incorporation of nucleotide analogs combined with microscopic examination. While often more time consuming, these protocols typically require far fewer cells, and allow accurate kinetic assessment of cell cycle progression. We also describe the use of a technique for the synchronization of adherent cells in mitosis by simple mechanical agitation (mitotic shake-off) that eliminates physiological perturbation associated with drug treatments.  相似文献   

7.
本文以微铺展技术制备中华鳖精母细胞联会复合体标本,经硝酸银染色后电镜观察,分析了SC组型。并与有丝分裂染色体组型相比较,发现二者有着良好的一致性,而且微小染色体的SC结构和着丝粒清晰,未发现形态上有分化的性染色体。中华鳖SC的研究为其细胞遗传学及性别决定机制提供了重要的依据。 Abstract Synaptonemal Complexes (SC) in Trionyx sinensis spermatocytes prepared with micro-spreading technique and silver staining was analyzed by electron microscopy. The meiotic SC karyotype was constructed from 10 cells and compared with mitotic chromosome karyotype. There is a good agreement between them. The structure and kinetochores of micro-chromosomes are very distinctive on each SC. There does not exist differential sex chromosome.  相似文献   

8.
We developed a rapid technique for differential staining of compacted chromatin as a tool for screening of large tissue culture cell populations for mitotic cells. With a combination of acid Giemsa staining and counterstaining, differential staining of mitotic cells and classification according to stage of mitosis can be accomplished at magnifications as low as x 50-100 (objectives of x 5-10). The mapped and classified cells can then be de-stained and re-studied for DNA content by Feulgen staining and/or for uptake of radioactive DNA precursors by autoradiography. The staining and de-staining procedures outlined do not affect the reproducibility and accuracy of DNA content measurements or measurements of radioactive uptake. Therefore, this technique can be used for cell kinetic analysis by the percentage labeled mitoses method and for cytophotometric studies of mitotic segregation.  相似文献   

9.
A mitotic cell subset has been identified with nuclear light scatter. Colcemid-treated T-47D human breast cancer cells were permeabilised, stained with ethidium bromide, and analysed by flow cytometry. Cells with G2M DNA content exhibited a unimodal distribution for DNA fluorescence and forward scatter, but two peaks were discernible with 90 degrees light scatter. A discrete low-scattering cell cluster could be distinguished from the G2 cell subset on two-dimensional contour plots of 90 degrees light scatter vs. DNA fluorescence; this cluster was reproduced by mitotic shake-off experiments and varied quantitatively with mitotic indices determined either by microscopy or by stathmokinetic cell-cycle analysis of DNA fluorescence. Cell sorting confirmed that the low-scattering cell cluster comprised predominantly metaphase and anaphase cells. Identification of mitotic cells with this one-step technique enables rapid analysis of drug-induced cell-cycle delay in cell populations with different rates of cell-cycle traverse. Hence, vincristine-induced cytostasis is shown to arise in part because of premitotic G2 arrest, whereas etoposide is shown to affect cycling cells with equal sensitivity in quiescent and activated cell populations. The use of light scatter to discriminate mitotic cells in this way facilitates analysis of drug-induced cell-cycle delay and supplements the information obtainable by conventional cell-cycle analysis.  相似文献   

10.
A capillary electrophoresis (CE)-based technique is reported here to monitor differential RNA synthesis in individual Chinese hamster ovary cells at distinct stages of the cell proliferation cycle. Cell synchronization was achieved by the shake-off method, in which mitotic (M) cells were dislodged, and cells at G(1), S, and G(2) phases were harvested 2.5, 10, and 13 h, respectively, after synchronizing the mitotic cells. Thirty-two cells (eight from each phase) were analyzed by injecting each cell into the capillary, lysing it with dilute surfactant, separating the RNA by capillary electrophoresis, and detecting the peaks with laser-induced fluorescence. The results from single cells show that the total amount of RNA increased at each successive stage (from G(1) to M), while the relative synthetic rates of different RNA fractions varied with progression through the cycle. There was a threefold increase in the synthetic rate of total RNA from S to G(2), compared with G(1) to S. In addition, differential accumulation of specific RNA fractions was observed, with the low-molecular-mass fraction exhibiting a much higher synthetic rate from G(2) to M, relative to the rates of the larger ribosomal RNA (rRNA) fractions. Comparison of the large rRNA fractions with one another reveals that at S phase more 28S rRNA was accumulated than 18S rRNA, and at G(1) and M phases, the synthetic rate of 28S rRNA was slowed compared with that of 18S. Minimal sample preparation, combined with the separation power of CE and single-cell detection sensitivity of laser-induced fluorescence, results in a simple method for assessing differential accumulation of RNA from distinct individual cells.  相似文献   

11.
The organisation of cytokeratin filaments in mitotic HeLa cells has been analysed by immunofluorescence microscopy using a monoclonal antibody which recognises proteins with apparent subunit molecular weights of 52 kDa and 57 kDa and which binds exclusively to cytokeratin-type filaments. Mitotic cells were prepared for microscopic analysis by hypotonic swelling, centrifugation onto glass slides, brief pre-extraction with 0.1% Triton X-100 and fixation in 80% ethanol. This procedure gave particularly good resolution of intermediate filaments and preservation of chromosome morphology. In prometaphase-metaphase cells the antigen was present in an anastomosing filament network which completely or partially enclosed the chromosomes, in filament fragments and in cytoplasmic aggregates. The epichromosomal filament network was absent from cells in anaphase or later stages of mitosis. In these cells non-filamentous antigen was often located in a narrow band defining the periphery of individual chromosomes and in variable numbers of cytoplasmic filaments or fragments. The results suggest that extensive disaggregation and reformation of cytokeratin filaments occurs during mitosis and that disaggregated cytokeratin proteins are frequently located adjacent to mitotic chromosomes.  相似文献   

12.
The mitotic cell selection technique was used to monitor the effect of cordycepin and/or 100 rad of X-rays on the entry of asynchronous or synchronous Chinese hamster ovary cells into mitosis. Continuous exposure of asynchronous cells to 5–50 μg/ml of cordycepin caused a rapid increase in the relative numbers of cells entering mitosis. In irradiated cells, cordycepin also reduced a 120-min mitotic delay by about 80 min and shifted the X-ray transition point about 10 min farther away from mitosis. Further studies showed that synchronous cells, treated continuously with 15 μg/ml of cordycepin starting at mid-to-late S phase, proceeded into mitosis approx. 40 min ahead of controls. This acceleration was associated with a 30-min lengthening of S phase and a reduction in the length of G2 from 80 to about 10 min. Furthermore, cordycepin reduced the 70-min mitotic delay observed for cells irradiated in S phase by 20 min. In contrast to the results for treatment at mid-S phase, continuous treatment during G2 of unirradiated synchronous cells with 15 μg/ml of cordycepin had little effect on accelerating cells into mitosis, yet did reduce by about 60 min the 170-min mitotic delay observed for cells irradiated in G2. Unirradiated synchronous cells treated with cordycepin starting before mid-S did not reach mitosis. Thus, there are the following transition points or intervals for cordycepin: for treatment prior to mid-S phase, cell cycle progression through S is blocked; for treatment between mid-S and late S, progression through S continues but progression through G2 is accelerated; and for treatment during G2, the rate of progression in accelerated only if the cells have been irradiated. These results are discussed in relation to the synthesis during late S and G2 of critical protein molecules essential for mitosis.  相似文献   

13.
Antisera prepared against a 210,000 mol wt microtubule-associated protein (210k MAP) isolated from the human cell line, HeLa, were used to survey a variety of cells and tissues for the presence of immunologically related proteins. The antisera were employed to test extracts of the cells and tissues, using a sensitive indirect immunofluorescence technique applied to polyacrylamide gels. Cross- reactive material of 210,000 mol wt was found in 10 kinds of cells and tissues derived from humans and four lines of cells from monkeys. Indirect immunofluorescent staining was also carried out on fixed cells and showed that the cross-reactive material was localized to interphase and mitotic microtubules as assayed in nine human and seven monkey cell lines. No protein that cross-reacted with 210k MAP antisera was detected in cells and tissues derived from two rodents, an ungulate, a marsupial, or a chicken. Therefore, the 210k MAP isolated from HeLa cells is present in a wide variety of cells and tissues of humans and other primates but is antigenically distinct from MAPs present in lower organisms.  相似文献   

14.
Summary Previously, it was found that senescent cells can undergo a modified cell cycle with mitotic cells as the end results. The major cycling events started with polyploidization, followed by depolyploidization to multinucleated cells (MNCs). These latter cells produced mononuclear offspring cells that could express mitotic cell divisions. In this report the emphasis is on late senescent fibroblasts that exhibited the senescence-associated change in cell morphology to large flat cells. Prior to live cell photography, flat cell cultures were maintained for months in the same culture flasks and therefore judged to be in a late senescent phase. All of the cellular events outlined above were present in these old cell cultures. Time lapse pictures showed movements of mitotic daughter cells away from each other and alignment of the chromosomes on the metaphase plate was visible in other mitotic cells. These data challenge the common view that cell senescence is irreversible and, therefore, an antitumor mechanism. A new finding was that the spike in polyploid cells in the near senescent phase consisted of cells with pairs of sister chromosomes from endoreduplication of DNA (two rounds of DNA synthesis and no mitosis). The lack of cells with 92 single chromosomes (e.g., G2 tetraploid cells) suggested that these polyploid cells also went through a changed cell cycle. The question now is whether these atypical polyploid cells are a subpopulation in senescence that can undergo the cycling from polyploidy to genome-reduced mitotic cells.  相似文献   

15.
Summary The resting cells ofCandida antarctica strain T-34 was found to produce a large amount of mannosylerythritol lipids as biosurfactants when incubated in the medium containing only the carbon source. The resting cells prepared from different water-soluble carbon sources were able to produce the lipids abundantly from water-insoluble carbon sources. Under the optimal conditions in a shake culture, the concentration of the total lipids amounted to about 47 g/l after 6 days, and the yield of the lipids became higher than that obtained by using the growing cells of the strain.  相似文献   

16.
A simple technique is presented for the isolation of cells from paraffin-embedded tissues for Feulgen DNA cytophotometric investigations. Tissue fragments from paraffin blocks were deparaffinized in xylene, rehydrated and refixed in a formalin solution and incubated in a solution of 0.5 pepsin in 0.25% hydrochloric acid. After filtration through a 70 micron mesh and centrifugation, the cells were smeared upon a glass slide. Comparison between the results obtained with freshly prepared imprints and with pepsin-extracted cells of the same tumor showed that the extraction technique does not influence the Feulgen reaction or the DNA distribution pattern. Investigations carried out on bladder and embryonal carcinomas have demonstrated that the method permits an analysis of histologically or histochemically identified tumor cells within individual tissue areas.  相似文献   

17.
Centromeres are special structures of eukaryotic chromosomes that hold sister chromatid together and ensure proper chromosome segregation during cell division. Centromeres consist of repeated sequences, which have hindered the study of centromere mitotic recombination and its consequences for centromeric function. We use a chromosome orientation fluorescence in situ hybridization technique to visualize and quantify recombination events at mouse centromeres. We show that centromere mitotic recombination occurs in normal cells to a higher frequency than telomere recombination and to a much higher frequency than chromosome-arm recombination. Furthermore, we show that centromere mitotic recombination is increased in cells lacking the Dnmt3a and Dnmt3b DNA methyltransferases, suggesting that the epigenetic state of centromeric heterochromatin controls recombination events at these regions. Increased centromere recombination in Dnmt3a,3b-deficient cells is accompanied by changes in the length of centromere repeats, suggesting that prevention of illicit centromere recombination is important to maintain centromere integrity in the mouse.  相似文献   

18.
19.
Suspension cultures of Chinese hamster cells (line CHO) were grown to stationary phase (approximately 8–9 x 105 cells/ml) in F-10 medium. Cells remained viable (95%) for at least 80 hr in stationary phase, and essentially all of the cells were in G1 Upon resuspension or dilution with fresh medium, the cells were induced to resume traverse of the life cycle in in synchrony, and the patterns of DNA synthesis and division were similar to those observed in cultures prepared by mitotic selection. Immediately after dilution, the rates of synthesis of RNA and protein increased threefold. This system provides a simple technique for production of large quantities of highly synchronized cells and may ultimately provide information on the biochemical mechanisms regulating cell-cycle traverse.  相似文献   

20.
In the cytoskeleton method for isolating microtubule-associated proteins MAP65, DcKRP120-1 and DcKRP120-2, carrot cells are first converted to protoplasts but this method cannot be used to isolate mitotic MAPs as mitotic synchrony is eroded during lengthy cellulase treatment. Anti-microtubule cycle blocks would also be unsuitable. We report here a method for overcoming these problems. Cellulase degradation of tobacco BY-2 cells for only several minutes allows extraction of detergent-soluble proteins, leaving synchronized "caged cytoskeletons" for depolymerization and enabling affinity purification of MAPs on neurotubules. This rapid and simple method should be of general utility: it can be bulked up, avoids anti-microtubule blocks, and is applicable to other cell suspensions. The effectiveness of the caged cytoskeleton method is demonstrated by comparing known MAPs (the 65 kDa structural MAPs and the kinesin-related protein, TKRP125) in synchronized cells taken at the mitotic peak with those in unsynchronized cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号