首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Nitraria retusa and Atriplex halimus (xero-halophytes) plants were grown in the range 0–800 mM NaCl while Medicago arborea (glycophyte) in 0–300 mM NaCl. Plants were harvested after 120 days of salt-treatment. The present study was designed to study the effect of salinity on root, stem and leaf anatomy, water relationship, and plant growth in greenhouse conditions. Salinity induced anatomical changes in the roots, stems and leaves. The cuticle and epidermis of N. retusa and A. halimus stems were unaffected by salinity. However, root anatomical parameters (root cross section area, cortex thickness and stele to root area ratio), and stem anatomical parameters (stem cross section area and cortex area) were promoted at 100–200 mM NaCl. Indicating that low to moderate salinity had a stimulating effect on root and stem growth of these xero-halophytic species. At higher salinities, root and stem structures were altered significantly, and their percentages of reduction were higher in A. halimus than in N. retusa whereas, in M. arborea, they were strongly altered as salinity rose. NaCl (100–300 mM) reduced leaf water content by 21.2–56.2% and specific leaf area by 51–88.1%, while increased leaf anatomical parameters in M. arborea (e.g. increased thickness of upper and lower epidermis, palisade and spongy mesophyll, entire lamina, and increased palisade to spongy mesophyll ratio). Similar results were evidenced in A. halimus leaves with salinity exceeding 100 mM NaCl. Leaves of N. retusa were thinner in salt-stressed plants while epidermis thickness and water content was unaffected by salinity. The size of xylem vessel was unchanged under salinity in the leaf’s main vein of the three species while we have increased number in M. arborea leaf main vein in the range of 200–300 mM NaCl. A longer distance between leaf vascular bundle, a reduced size and increased number of xylem vessel especially in stem than in root vascular system was evidenced in M. arborea treated plants and only at (400–800 mM) in the xero-halophytic species. The effects of NaCl toxicity on leaf, stem and root ultrastructure are discussed in relation to the degree of salt resistance of these three species. Our results suggest that both N. retusa and A. halimus show high tolerance to salinity while M. arborea was considered as a salt tolerant species.  相似文献   

2.
3.
Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m−1. Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m−1. Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m−1. Similarly, chlorophyll content and K+/Na+ of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.  相似文献   

4.
Photosynthetic induction times and photoinhibition in relation to simulated sunflecks (sudden increase of irradiance from 20 to 1,500 μmol m−2 s−1) were examined in leaves of co-occurring Fagus lucida (a deciduous tree) and Castanopsis lamontii (an evergreen tree) saplings grown either in a beech forest understory or in an adjacent open site during a late rainy season. Two hypotheses were tested: (1) understory leaves would display faster photosynthetic induction times and greater photoinhibition than open-grown leaves; and (2) evergreen species would have slower photosynthetic induction times and lighter photoinhibition than deciduous species. Times to reach 90% of maximal CO2 assimilation rate (t 90%A ) and stomatal conductance did not differ between species, but showed faster by 3–5 min in open-grown leaves than understory leaves due to higher initial stomatal conductance (g s initial) and induction state 1 min into simulated sunflecks (IS1min) in the former. Our analysis across the published data on photosynthetic induction of 48 broad-leaved woody species again revealed the negative correlations between t 90%A and either g s initial or IS1min, and the similarity of t 90%A and between evergreen and deciduous species. Measurements of maximum PSII photochemical efficiency (F v/F m) indicated that photoinhibition occurred in saplings in any of the growth habitats during sunfleck-induced photosynthetic induction. Despite no interspecific differences in the degree of photoinhibition, understory leaves of both species suffered heavier photoinhibition than open-grown leaves, as indicated by a stronger decrease of F v/F m in the former. Dynamic changes in the quantum yields of PSII photochemistry and ΔpH- and xanthophyll-regulated thermal dissipation and adjustments in the partitioning of electron flow between assimilative and non-assimilative processes were functional to resist photoinhibition. However, such photoinhibition, together with stomatal and biochemical limitations, would decrease carbon gain during simulated sunflecks, particularly in understory leaves.  相似文献   

5.
Field trials were conducted to evaluate the efficacy of wheat bran bait formulations of Paranosema locustae and Metarhizium anisopliae for controlling grasshoppers in southeast Niger. Treatments consisted of wheat bran baits mixed with M. anisopliae, P. locustae + M. anisopliae or with P. locustae spores and P. locustae + sugar. Oedaleus senegalensis, Pyrgomorpha cognata and Acrotylus blondeli were the predominant species at the time of application representing ca. 94% of the total population. Bran application was done when O. senegalensis (ca. 75% of the population) was at its early developmental stages, with first, second and third instars accounting for 64–85%. Grasshopper population reduction, P. locustae prevalence and level of infections in the predominant species were monitored. Manual application of P. locustae and M. anisopliae formulated in wheat bran has proven to induce consistent pathogen infection in grasshopper populations. Population density over the three weeks monitoring, typically decreased by 44.7 ± 6.9%, 52.8 ± 8.4%, 73.7 ± 5.5% and 89.1 ± 1.8% in P. locustae, P. locustae + sugar, M. anisopliae and P. locustae + M. anisopliae treated plots respectively. Paranosema locustae prevalence in surviving adult grasshoppers at 28 after application was 48.1 ± 2.3%, 28.9 ± 4.8% and 27.4 ± 3.7%, with infection level of 6.2 ± 0.8 × 106, 2.3 ± 0.3 × 104 and 2.1 ± 0.3 × 103 spores mg−1 host weight in O. senegalensis, A blondeli and P. cognate respectively. Other species that each accounted for <2% of the community, namely Aiolopus thalassinus, A. simulatrix, Acorypha glaucopsis, Acrotylus patruelis, Anacridium melanorhodon, Diabolocatantops axillaris, Kraussaria angulifera and Schistocerca gregaria were found to show sign of infection. The results from this study suggest that wheat bran application of M. anisopliae and P. locustae alone or in combination, targeting early instars grasshopper could be a valuable option in grasshopper control programs.  相似文献   

6.
Bacillus subtilis glutamine synthetase (GS) was highly expressed (about 86% of total protein) as soluble protein in Escherichia coli BL21(DE3) containing pET28a-glnA, which was induced by 0.4 mM IPTG in LB medium, and maximal theanine-forming activity of the recombinant GS induced in LB is 6.4 U/mg at a series concentration (0–100 mM) of Mn2+ at optimal pH 7.5. In order to get GS with high theanine-forming activity, safety, and low cost for food and pharmaceutics industry, M9-A (details are described in “Materials and methods”) and 0.1% (w/v) lactose were selected as culture medium and inducer respectively. Recombinant GS was also highly expressed (84% of total protein) and totally soluble in M9-A and the specific activity of the recombinant GS is 6.2 U/mg which is approximate to that (6.4 U/mg) induced in LB in the presence of 10 mM Mn2+ at optimal pH 7.5. The activity is markedly higher activated by Mn2+ than that by other nine bivalent cations. Furthermore, M9-B (5 μM Mn2+ was added into M9-A) was used to culture the recombinant strain and theanine-forming activity of the recombinant GS induced in M9-B was improved 20% (up to 7.6 U/mg). Finally, theanine production experiment coupled with yeast fermentation system was carried out in a 1.0 ml reaction system with 0.1 mg crude GS from M9-B or M9-A, and the yield of theanine were 15.3 and 13.1 g/L by paper chromatography and HPLC, respectively.  相似文献   

7.
This work reports the direct electrochemistry of Paracoccus pantotrophus pseudoazurin and the mediated catalysis of cytochrome c peroxidase from the same organism. The voltammetric behaviour was examined at a gold membrane electrode, and the studies were performed in the presence of calcium to enable the peroxidase activation. A formal reduction potential, E 0′, of 230 ± 5 mV was determined for pseudoazurin at pH 7.0. Its voltammetric signal presented a pH dependence, defined by pK values of 6.5 and 10.5 in the oxidised state and 7.2 in the reduced state, and was constant up to 1 M NaCl. This small copper protein was shown to be competent as an electron donor to cytochrome c peroxidase and the kinetics of intermolecular electron transfer was analysed. A second-order rate constant of 1.4 ± 0.2 × 105 M−1 s−1 was determined at 0 M NaCl. This parameter has a maximum at 0.3 M NaCl and is pH-independent between pH 5 and 9.  相似文献   

8.
The effects of NaCl stress on growth, water status, contents of protein, proline, malondialdehyde (MDA), various sugars and photosynthetic pigments were investigated in seedlings of Salicornia persica and S. europaea grown in vitro. Seeds were germinated under NaCl (0, 100, 200, 300, 400, 500 and 600 mM) on Murashige and Skoog medium for 45 d. The shoot growth of both species increased under low NaCl concentration (100 mM) and then decreased with increasing NaCl concentrations. In contrast to S. persica, root length in S. europaea reduced steadily with an increase in salinity. Proline content in S. persica was higher than in S. europaea at most NaCl concentrations. Proline, reducing saccharide, oligosaccharide and soluble saccharide contents increased under salinity in both species. In contrast, contents of proteins and polysaccharides reduced in both species under salt stress. MDA content remained close to control at moderate NaCl concentrations (100 and 200 mM) and increased at higher salinities. MDA content in S. europaea was significantly higher than S. persica at higher salinities. Salt treatments decreased K+ and P contents in seedlings of both species. Significant reduction in contents of chlorophylls and carotenoids due to NaCl stress was also observed in seedlings of both species. Some differences appeared between S. persica and S. europaea concerning proteins profile. On the basis of the data obtained, S. persica is more salt-tolerant than S. europaea.  相似文献   

9.
The effects of salinity (400 mM NaCl) on growth, biomass partitioning, photosynthesis, and leaf ultrastructure were studied in hydroponically grown plants of Aeluropus littoralis (Willd) Parl. NaCl produced a significant inhibition of the main growth parameters and a reduction in leaf gas exchange (e.g. decreased rates of photosynthesis and stomatal conductance). However, NaCl salinity affected neither the composition of photosynthesis pigments nor leaf water content. The reduction in leaf gas exchange seemed to correlate with a decrease in mesophyll thickness as well as a severe disorganisation of chloroplast structure, with misshapen chloroplasts and dilated thylakoid membranes. Conspicuously, mesophyll chloroplasts were more sensitive to salt treatment than those of bundle sheath cells. The effects of NaCl toxicity on leaf structure and ultrastructure and the associated physiological implications are discussed in relation to the degree of salt resistance of A. littoralis.  相似文献   

10.
Two extracellular chitinases were purified from Paecilomyces variotii DG-3, a chitinase producer and a nematode egg-parasitic fungus, to homogeneity by DEAE Sephadex A-50 and Sephadex G-100 chromatography. The purified enzymes were a monomer with an apparent molecular mass of 32 kDa (Chi32) and 46 kDa (Chi46), respectively, and showed chitinase activity bands with 0.01% glycol chitin as a substrate after SDS-PAGE. The first 20 and 15 N-terminal amino acid sequences of Chi32 and Chi46 were determined to be Asp-Pro-Typ-Gln-Thr-Asn-Val-Val-Tyr-Thr-Gly-Gln-Asp-Phe-Val-Ser-Pro-Asp-Leu-Phe and Asp-Ala-X-X-Tyr-Arg-Ser-Val-Ala-Tyr-Phe-Val-Asn-Trp-Ala, respectively. Optimal temperature and pH of the Chi32 and Chi46 were found to be both 60°C, and 2.5 and 3.0, respectively. Chi32 was almost inhibited by metal ions Ag+ and Hg2+ while Chi46 by Hg2+ and Pb2+ at a 10 mM concentration but both enzymes were enhanced by 1 mM concentration of Co2+. On analyzing the hydrolyzates of chitin oligomers [(GlcNAc) n , n = 2–6)], it was considered that Chi32 degraded chitin oligomers as an exo-type chitinase while Chi46 as an endo-type chitinase.  相似文献   

11.
Bacterial isolates having antifungal and good plant growth-promoting attributes were isolated from chir-pine (Pinus roxburghii) rhizosphere. An isolate, Bacillus subtilis BN1 exhibited strong antagonistic activity against Macrophomina phaseolina, and other phytopathogens including Fusarium oxysporum and Rhizoctonia solani. It was characterized and selected for the present studies. BN1 resulted in vacuolation, hyphal squeezing, swelling, abnormal branching and lysis of mycelia. The cell-free culture filtrate of BN1 inhibited the growth of M. phaseolina. Pot trial study resulted in statistically significant increase in seedling biomass besides reduction in root rot symptoms in chir-pine seedlings. BN1 treatment resulted in 43.6% and 93.54% increases in root and shoot dry weights respectively, as compared to control. Also, 80–85% seed viability was recorded in treatments receiving BN1 either alone or in the presence of M. phaseolina, compared to 54.5% with M. phaseolina. Bioinoculant formulation study suggested that maximum viability of bacteria was in a sawdust-based carrier. B. subtilis BN1 produced lytic enzymes, chitinase and β-1,3-glucanase, which are known to cause hyphal degradation and digestion of the cell wall component of M. phaseolina. In the presence of M. phaseolina, population of B1 was 1.5 × 10c.f.u. g−1 root after one month, which increased to 4.5 × 10c.f.u. g−1 root in three months. Positive root colonization capability of B. subtilis BN1 proved it as a potent biocontrol agent.  相似文献   

12.
Environmental and economic factors have stimulated research in the area of bioenergy crops. While many plants have been identified as potential energy crops, one species in particular, Miscanthus x giganteus, appears to have the most promise. As researchers attempt to exploit and improve M. x giganteus, genome information is critical. In this study, the genome size of M. x giganteus and its two progenitor species were examined by flow cytometry and stomatal cell analyses. M. x giganteus was found to have genome size of 7.0 pg while Miscanthus sinensis and Miscanthus sacchariflorus were observed to have genome sizes of 5.5 and 4.5 pg respectively with stomatal size correlating with genome size. Upon computing the two tetraploid × diploid hybrids theoretical genome sizes, the data presented in this paper supports the hypothesis of the union of a 2x M. sacchariflorus and a 1x M. sinensis gamete for the formation of the allotriploid, M. x giganteus. Such genomic information provides basic knowledge that is important in M. x giganteus plant improvement.  相似文献   

13.
Summary  Seven new names at species rank are proposed in Memecylon sect. Afzeliana Jacq.-Fél., a group of forest shrubs and small trees confined to Guineo-Congolian Africa. The group is centred in Cameroon, where 17 of the 20 species occur. A new flower type, the “star-flower” in Memecylon is revealed, and its taxonomic and ecological importance discussed. Three new, locally endemic species from the South West Province of Cameroon are described, mapped and illustrated: M. kupeanum R. D. Stone, Ghogue & Cheek, M. bakossiense R. D. Stone, Ghogue & Cheek, and M. rheophyticum R. D. Stone, Ghogue & Cheek. Two new names, M. accedens R. D. Stone, Ghogue & Cheek and M. hyleastrum R. D. Stone & Ghogue and one new combination, M. mamfeanum (Jacq.-Fél.) R. D. Stone, Ghogue & Cheek are provided at species level for three taxa originally proposed as varieties of M. afzelii G. Don. The taxon M. arcuatomarginatum var. simulans Jacq.-Fél. is also elevated to species status, as M. simulans (Jacq.-Fél.) R. D. Stone & Ghogue. Conservation assessments are provided for all the newly named taxa. A key is provided to the species of Memecylon sect. Afzeliana.  相似文献   

14.
The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant terpenes found in both species were α-pinene and Δ3-carene. β-Pinene and myrcene were also abundant in both species. P. halepensis concentrations were much greater than those of Q. ilex in agreement with the lack of storage in the latter species (15205.60 ± 1140.04 vs. 0.54 ± 0.08 μg g−1 [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total terpene concentrations in both species (54% in P. halepensis and 119% in Q. ilex). The fertilization treatment (addition of either 250 kg N ha−1 or 250 kg P ha−1 or both) had no significant effects on terpene foliar concentrations. The terpene concentrations increased from 0.25 μg g−1 [d.m.] at 30°C to 0.70 μg g−1 [d.m.] at 40°C in Q. ilex (the non-storing species) and from 2,240 μg g−1 [d.m.] at 30°C to 15,621 μg g−1 [d.m.] at 40°C in P. halepensis (the storing species). Both species presented negative relationship between terpene concentrations and relative water contents (RWC). The results of this study show that higher terpene concentrations can be expected in the warmer and drier conditions predicted for the next decades in the Mediterranean region.  相似文献   

15.
Salt marshes are ecosystems subjected to a variety of environmental stresses like high salinity, water deficit, intense radiation or high temperatures. Field measurements were conduced in two halophyte species, Atriplex portulacoides L. and Limoniastrum monopetalum L., in the Reserva Natural do Sapal de Castro Marim, to compare their physiological response, i.e., water potential (ψ), net photosynthetic rate (A), stomatal conductance (gs) under natural conditions. Both species demonstrated marked variations in ψ throughout the year, with very low values in the summer, the period of higher salinity, drought and temperature. Deficit water potential (Δψ = ψmidday − ψpredawn) was lower in the summer than in other seasons in A. portulacoides but not in L. monopetalum. The highest values for A and gs in L. monopetalum were observed in autumn and for A. portulacoides in winter, presenting both lowest values in spring and summer. Amax was particularly high for L. monopetalum than for A. portulacoides in summer and autumn, despite gsmax was similar in both species. Diurnal pattern of A and gs were similar in both species, with higher values in the morning, decreasing throughout the day.  相似文献   

16.
Su Q  Feng S  An L  Zhang G 《Biotechnology letters》2007,29(12):1959-1963
High-affinity K+ transporters play an important role in K+ absorption of plants. We isolated a HAK gene from Aeluropus littoralis, a graminaceous halophyte. The amino acid sequence of AlHAK showed high homology with HAK transporters obtained from Oryza sativa (82%) and Hordeum vulgare (82%). When expressed in Saccharomyces cereviae WΔ3, AlHAK performed high-affinity K+ uptake with a Km value of 8 μM, and the growth of transformants was dramatically inhibited by 150 mM Rb+ and 150 mM Cs+ but less affected by 300 mM Na+. AlHAK may thus improve the capacity of plants to maintain a high cytosolic K+/Na+ ratio at high salinity.  相似文献   

17.
The combined effect of temperature, food level and the presence of an invertebrate predator on the body size of the rotifer Brachionus havanaensis were tested in this study. B. havanaensis was cultured at 15, 20, and 25°C under three different Chlorella vulgaris levels (0.5 × 106, 1.0 × 106 and 2.0 × 106 cells ml−1) in the presence and in the absence of Asplanchna girodi. For each treatment we maintained three replicates and constant (0.4 ind ml−1) population density of B. havanaensis. In treatments containing A. girodi, the predator was separated from the prey by a mesh (pore size 50 μm). On the last day of the experiment, a portion of the B. havanaensis population was sampled for several morphometric measurements (adult lorica length, width, posterior spine length, body volume, and the egg volume). Size measurements were done by drawing the specimens using a calibrated camera lucida. Statistically significant impact of temperature as well as the predator’s presence was observed on the lorica length, posterior spine, and egg volume of B. havanaensis. The interactions of food × temperature, or predator′s presence × food × temperature were non-significant (P > 0.05) for lorica length, spine length, body volume, and egg volume. Regardless of the type of treatment, there was a direct positive correlation between lorica length and width. Egg volume was linearly related to the adult size. Notably long posterior spines were observed in treatments containing the presence of A. girodi. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont & R. Rico-Martínez. Advances in Rotifer Research  相似文献   

18.
Growth, photosynthesis, and Na+, K+, and Ca2+ distributions were investigated in 2-year-old hydroponically cultured Populus alba L. cuttings exposed to salt stresses (0, 0.85, 8.5, 17, and 85 mM NaCl in experiment 1 and 0, 50, 100, 150, and 200 mM in experiment 2) for 4 weeks in 2/5 Hoagland solution. Salt did not markedly inhibit height growth and diameter increment in 150 and 100 mM NaCl, respectively. The 85 mM NaCl treatment increased the dry weights of roots and total dry weight of plants, while 150 mM NaCl significantly reduced the dry weights of leaves, stems, and total plant weight. The decline in the photosynthetic rate lagged 2 weeks behind that of stomatal conductance in the 50 and 100 mM salt solutions. Different ions exhibited different distributions in different parts of the plant. Most Na+ ions were excluded and/or compartmentalized in roots at low and moderate salt stress (≤50 mM). K+ content in leaves increased with the increase in the salt concentration in the growth solutions.  相似文献   

19.
The effects of salt stress on growth parameters, free proline content, ion accumulation, lipid peroxidation, and several antioxidative enzymes activities were investigated in S. persica and S. europaea. The seedlings were grown for 2 months in half-strength Hoagland solution and treated with different concentrations of NaCl (0, 85, 170, 340, and 510 mM) for 21 days. The fresh and dry weights of both species increased significantly at 85 and 170 mM NaCl and decreased at higher concentrations. Salinity increased proline content in both the species as compared to that of control. Sodium (Na+) content in roots and shoots increased, whereas K+ and Pi content in both organs decreased. At all NaCl concentrations, the total amounts of Na+ and K+ were higher in shoots than in roots. Malondialdehyde (MDA) content declined at moderate NaCl concentrations (85 and 170 mM) and increased at higher levels. With increased salinity, superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (GPX) activities also increased gradually in both species. In addition, it seems that GPX, CAT, and SOD activities play an essential protective role in the scavenging reactive oxygen species (ROS) in both species. Native polyacrylamide gel electrophoresis (PAGE) indicated different isoform profiles between S. persica and S. europaea concerning antioxidant enzymes. These results showed that S. persica exhibits a better protection mechanism against oxidative damage and it is more salt-tolerant than S. europaea possibly by maintaining and/or increasing growth parameters, ion accumulation, and antioxidant enzyme activities.  相似文献   

20.
The aim of this study was to assess the effect of a commercial green tea extract (TEAVIGO™) on the microbial growth of three probiotic strains (Lactobacillus and Bifidobacterium), as well as three pathogenic bacteria. MIC and co-culture studies were performed. The MICs of the green tea extract against Staphylococcus aureus and Streptococcus pyogenes (100 μg ml−1) were considerably lower than those against the probiotic strains tested (>800 μg ml−1) and Escherichia coli (800 μg ml−1). In co-culture studies, a synergistic effect of the probiotic strains and the green tea extract was observed against both Staph. aureus and Strep. pyogenes. Green tea extract in combination with probiotics significantly reduced the viable count of both pathogens at 4 h and by 24 h had completely abolished the recovery of viable Staph. aureus and Strep. pyogenes. These reductions were more significant than the reductions induced by probiotics or green tea extracts used separately. These results demonstrate the potential for combined therapy using the green tea extract plus probiotics on microbial infections caused by Staph. aureus and Strep. pyogenes. As probiotics and the green tea extract are derived from natural products, treatment with these agents may represent important adjuncts to, or alternatives to, conventional antibiotic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号