首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substrate specificity of biotransformation enzymes of culture Nocardia erythropolis was studied. Products of transformation of cholesterol and three sterols of microbial origin: ergosterol, ergosta-5,7-dien-3 beta-ol and ergosta-7,22-dien-3 beta-ol was identified with a help of thin-layer chromatography, UV spectrophotometry and mass-spectrometry. It was established, that delta 22-bond in the side chains of sterols and delta 7-bond slows and delta 5-bond makes impossible cleavage of side chains of sterols.  相似文献   

2.
3beta-Hydroxy sterols occurring at a concentration of at least 0.001% of the sterol mixtures of Pseudoplexaura porosa and Plexaura homomalla have been fractionated using a series of refined techniques and subsequently analyzed using combined gas chromatography-mass spectrometry (GC-MS) in the development of a procedure for examining the minor and trace components of marine sterol mixtures. A total of 49 sterols were found which spanned a molecular weight range of 274 to 440. In addition delta4-3-keto analogs of cholesterol, 24-methylcholesterol and gorgosterol were found in the extracts of P. homomalla. Initial separation of various natural sterol-containing conjugates and free sterols was found to have a number of advantages. Fractional digitonin precipitation and alumina column chromatography were found to possess greater sterol separation abilities than previously recognized. Many of the minor sterols were found to possess novel structures including a series of short side chain sterols, 19-nor sterols, 5beta-stanols and 4-monomethyl sterols for which structure elucidation work is continuing.  相似文献   

3.
The enzymatic activity and sterol substrate specificity of acyl coenzyme A:cholesterol acyltransferase (ACAT) were measured in microsomes of cells from Heliothis zea. Under standard assay conditions, the specific enzymatic activity of ACAT was highest in the intestine followed by the fat body and ovary (380.7, 30.7, 8.3 pmol/min per mg, respectively). The structure of the exogenous sterol used in the ACAT assay affected its rate of esterification. The relative rates of esterification of analogs of cholesterol with various modifications of the side chain were: 24-H greater than 24 alpha-CH3 greater than delta 22 greater than delta 24 greater than 24 alpha-C2H5 greater than 24 beta-CH3, delta 22-24 beta-CH3 and delta 22-24 alpha-C2H5. The number and position of double bonds in the B-ring of the sterol nucleus greatly affected the rate of esterification of sterols by ACAT. The average relative rates of esterification of sterols with differences in their B-rings were: delta 7 much greater than delta 8 greater than delta 0 greater than delta 5 greater than delta 5.7. The presence of a 9,14-cyclopropane group and/or methyl groups at the C-4 and 14 positions prevented significant esterification of such sterols. The formation of cholesteryl and lathosteryl esters was partially inhibited in microsomes from the intestine, fat body, and ovary by the addition of the ACAT inhibitor, 3-(decyldimethylsilyl)-N-[2-(4-methylphenyl)-1-phenylethyl]prop anamide (Sandoz Compound 58-035).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
M Kobayashi  H Mitsuhashi 《Steroids》1975,26(5):605-624
The sterols of the scallop, Patinopecten yessoensis Jay, was found to contain over 20 components. The major components were delta5-sterols, and lesser amount of ring-saturated sterols were also present. Biogenetically unusual C26 sterols (24-norcholesta-5,22-dien-3beta-ol and 24-norcholest-22-en-3beta-ol) and 24(28)-cis-24-propylidenecholest-5-en-3beta-ol (29-methylisofucosterol), 22-trans-27-nor-(24S)-24-methylcholesta-5,22-dien-3beta-ol (occelasterol), and a new sterol, 22-trans-27-nor-(24S)-24-methylcholest-22-en-3beta-ol (patinosterol), were isolated and their structures were confirmed. Occurrence of 22-trans-(24S)-24-methylcholesta-5,22-dien-3beta-ol (24-epibrassicasterol) was confirmed. 22-cis-Cholesta-5,22-dien-3beta-ol was not found.  相似文献   

5.
Mycoplasma gallisepticum was adapted to grow with delta 5-sterols modified in the aliphatic side chain, and stopped-flow kinetic measurements of filipin association were made to estimate the sterol distribution between the two leaflets of the membrane. Cholesterol derivatives with unsaturated side chains (desmosterol, cis- and trans-22-dehydrocholesterol, and cholesta-5,22E,24-trien-3 beta-ol) or an alkyl substituent (beta-sitosterol) were predominantly (86-94%) localized in the outer leaflet of the bilayer. However, cholesterol, 20-isocholesterol, and sterols with side chains of varying lengths (in the 20(R)-n-alkylpregn-5-en-3 beta-ol series where the alkyl group ranged from ethyl to undecyl) were distributed nearly symmetrically between the two halves of the bilayer. Kinetic measurements of beta-[14C]sitosterol and [14C]desmosterol exchange between M. gallisepticum cells and an excess of sonicated sterol/phosphatidylcholine vesicles confirmed the filipin-binding studies. More than 90% of these radiolabeled sterols underwent exchange at 37 degrees C with unlabeled sterols in vesicles over a period of 12-14 h in the presence of 2% (w/v) albumin. beta-[14C]Sitosterol exchange was characterized by biphasic exchange kinetics, indicative of two pools of sitosterol molecules in the cell membrane. Only a single kinetic pool was detected for [14C]desmosterol exchange. Stopped flow measurements of filipin binding to beta-sitosterol and stigmasterol also revealed an asymmetrical localization of these sterols in membranes of growing Mycoplasma. capricolum cells. When an early exponential culture of beta-sitosterol- or stigmasterol-adapted M. capricolum was transferred to a sterol-rich medium at 37 degrees C, approximately three-quarters of the beta-sitosterol or stigmasterol was localized in the outer leaflet after growth was continued for 6 h; in contrast, cholesterol was distributed symmetrically after about 1 h. The asymmetric localization of sterols with alkylated or unsaturated side chains suggests that growth-supporting sterols need not be translocated extensively into the inner leaflet of the bilayers of M. gallisepticum and M. capricolum.  相似文献   

6.
We examined, by reverse-phase high performance liquid chromatography (HPLC), the hydrophilic-hydrophobic balance of cholesterol and 12 non-cholesterol sterols and related this property to their equilibrium micellar solubilities in sodium taurocholate and sodium glycodeoxycholate solutions. Sterols investigated exhibited structural variations in the polar function (3 alpha-OH, 3 beta-OH, 3 beta-SH), nuclear double bonds (none, delta 5, or delta 7), side chain length (C27, C28, C29) and side chain double bonds (none, delta 22, or delta 24). In general, a sterol's hydrophilic-hydrophobic balance became progressively more hydrophobic (as exemplified by increasing HPLC retention values, k') with additions of side chain methyl (C28) and ethyl (C29) groups and with 3 beta-SH substitution of the 3-OH polar function. Side chain delta 22 and especially delta 24 double bonds rendered the sterols appreciably more hydrophilic, whereas a single nuclear double bond had little influence. Sterol solubilities (24 degrees C, 0.15 M Na+) were uniformly greater in 50 mM solutions of sodium glycodeoxycholate (range 0.15 to 2.5 mM) than in equimolar solutions of the more hydrophilic bile salt, sodium taurocholate (range 0.07 to 0.67 mM). For each bile salt system, a strong inverse correlation existed between micellar solubilities of sterols and their HPLC k' values, indicating that more hydrophilic sterols had greater micellar solubilities than the more hydrophobic ones. Based upon the aqueous monomeric solubilities of cholesterol (C27) and beta-sitosterol (C29) at 24 degrees C, we derived free energy changes associated with micellar binding and found that solubilization of both sterols was more energetically favored in glycodeoxycholate solutions. Although cholesterol exhibited a higher binding affinity than beta-sitosterol in glycodeoxycholate micelles, solubilization of beta-sitosterol in taurocholate micelles was more energetically favored than cholesterol by -0.6 kcal/mol. Based upon these results we offer a thermodynamic explanation for the greater micellar solubilities of more hydrophilic sterols and suggest that the high affinity, but low capacity, of a typical phytosterol for binding to trihydroxy bile salt micelles may provide a physical-chemical basis for its inhibition of intestinal cholesterol absorption.  相似文献   

7.
Cultures of Tetrahymena pyriformis were incubated with various sterols and the extent of dehydrogenation at C-7 and C-22 was determined. The sterols incubated were desmosterol, 22-dehydrodesmosterol, 24-methyldesmosterol, 24 alpha-methylcholesterol (campesterol), 24-methylene-cholesterol, isohalosterol (26,27-bisnorcampesterol, also known as 24,24-dimethylchol-5-en-e beta-ol, a naturally occurring C26-sterol), and 20-isohalosterol. 20-Isohalosterol was not metabolized, while products with delta 7- and delta 22-bonds were formed from isohalosterol and all of the other sterols studied. This confirms an earlier conclusion, based on results with 20-isocholesterol and cholesterol, that inversion of the configuration from 20(R) to 20(S) completely prevents metabolism both in the nucleus and the side chain. On the other hand, changes in the electronics or stereochemistry at C-24 had a direct affect only on metabolism in the side chain. The presence of a methyl group at C-24 reduced the yield of metabolites with a delta 22-bond relative to those with a delta 7-bond producing an accumulation of 7-dehydro metabolite. A double bond at position-24 counteracted this steric effect, presumably by enhancing the rate of dehydrogenation, and a delta 24(28)-bond was more effect than was a delta 24(25)-bond.  相似文献   

8.
The functional importance of structural features of ergosterol in yeast.   总被引:6,自引:0,他引:6  
As an approach to the study of the relationship between the structure of sterols and their capacity to function in the lipid leaflet of membranes, various sterols were examined for their ability to support the growth of anaerobic Saccharomyces cerevisiae. A marked dependence on precise structural features was observed in growth-response and morphology. Of the chemical groups which distinguish ergosterol, the main sterol of S. cerevisiae, the hydroxyl group at C-3 was obligatory, and the other groups were found to be of the following relative importance: 24beta-methyl-delta22-grouping greater than 24beta-methyl group greater than delta5,7-diene system = delta5-bond approximately or equal to no double bond. Methyl groups at C-4 and C-14 were inconsistent with activity. Consequently, the data strongly suggest that the normal biosynthetic processes removal of methyl groups from the nucleus and introduction of one in the side chain are of functional significance. A double bond between C-17 and C-20 joining the steroidal side chain to the nucleus had no deleterious effect on the growth process but only if C-22 was trans-oriented to C-13. In the cis-case no growth at all proceeded. This means the natural sterol probably acts functionally in the form of its preferred conformer in which C-22 is to the right ("right-handed") in the usual view. Since the placing of a substituent (OH or CH3) in the molecule at C-20 in such a way that it appears on the front side in the right-handed conformer completely destroyed activity, the sterol apparently presents its front face to protein or phospholipid when complexing occurs.  相似文献   

9.
Sterols with biosynthetically unusually short side chains (fewer than eight carbon atoms expected for primary squalene cyclization products) have been identified in the extracts of numerous marine invertebrates. The structures of the short side chain and conventional side chain sterols have been determined for various species of Porifera and Coelenterata. Sterol structures were determined by comparison of their mass spectra and gas chromatographic retention times with those of authentic or synthetic samples. Evidence is presented supporting the natural occurrence of these compounds in the tissues of the marine invertebrates as opposed to formation by degradative processes during sample handling or laboratory work-up. The short side chain sterols were found to possess predominantly the androst-5-en-3β-ol nucleus with C-17 alkyl side chains ranging from zero to six carbon atoms. Concentrations of short side chain sterols range from trace levels to over 5% of the sterol mixture in various species. The possible origins of these short side chain sterols are evaluated in the light of current knowledge of sterol function, biosynthesis, dealkylation, microbial degradation, and autoxidation. Known sterol autoxidations are reviewed, and possible singlet oxygen and free radical mechanisms of sterol side chain autoxidation (at physiological temperatures) which may lead to sterols with shortened hydrocarbon side chain are suggested. The possible autoxidative generation of short side chain sterols from known marine sterols by the suggested mechanisms is evaluated through application of the REACT computer program. Predicted short side chains are tabulated for each parent marine sterol side chain and then compared with the compositions of the actual sterols found in the marine extracts examined. The possible natural environmental or in vivo autoxidative formation of the short side chain marine sterols is supported by these evaluations.  相似文献   

10.
Giner JL  Gunasekera SP  Pomponi SA 《Steroids》1999,64(12):820-824
The marine sponge Petrosia weinbergi was found to contain isofucosterol and clionasterol as its major sterols. The rare cyclopropyl sterol (24S,28S)-24,28-methylenestigmast-5-en-3beta-ol, previously detected as only 0.07% of the total sterols of a pelagophytic alga Pulvinaria sp., made up 6.6% of the total sterols. These sterols are believed to be the biosynthetic precursors of the antiviral orthoesterols and weinbersterols found in the same sponge. Based on the side chains of the isolated sterols, the absolute configurations of the antiviral steroid side chains are assigned to be (24R,28S)- for orthoesterol B, (24R)- for orthoesterol C, and (24S,28S)- for weinbersterols A and B.  相似文献   

11.
The sterols of prepupal honey bees, Apis mellifera L., from brood reared by workers fed chemically-defined synthetic diets containing cholesterol, campesterol, sitosterol, stigmasterol, 24-methylenecholesterol, or no sterol over a 12-week period were isolated, identified, and quantified. The major sterol present in each prepupal sample was 24-methylenecholesterol, but significant levels of sitosterol and isofucosterol were also present in every case, as was a very small percentage of desmosterol (usually < 1%). This is the first report of isofucosterol being identified in the sterols of the honey bee. A considerably larger percentage of each dietary sterol was found in prepupae reared by workers fed that particular sterol in the diet. This was most dramatic in the case of the cholesterol diet in which case cholesterol content increased to as much as 17.2% of the prepupal sterols, whereas cholesterol had not exceeded 2.2% in samples from other diet regimens. However, stigmasterol comprised no more than 6.3% of the total sterols in any sample from prepupae fed the stigmasterol diet. The preponderance of 24-methylenecholesterol in all prepupae, regardless of the dietary sterol provided to the workers, as well as the lesser quantities of sitosterol and isofucosterol present in all samples, suggest a unique system of utilization and metabolism of these dietary sterols by the worker bees. Apparently they make available to the brood varying amounts of unchanged dietary sterol plus considerable and fairly constant portions of 24-methylenecholesterol, sitosterol, and isofucosterol drawn from their own sterol pools.  相似文献   

12.
Analysis of sterols of Saccharomyces cerevisiae mutants N3, N15, N26, and N3H, defective in sterol biosynthesis, was performed. Strains N3, N15, and N26 were isolated from their mother strain, M10, by screening with nystatin (Nagai et al. (1980) Mie Med. J. 30, 215-224), and strain N3H was isolated from N3 as a doubly-mutated strain. The main sterols of N3, N15, N26, and N3H were ergosta-7,22-dienol, ergost-8-enol, cholesta-5,7,24-trienol, and ergosta-7,22,24(28)-trienol, respectively. The former three strains were characterized as defective in delta 5-desaturation, delta 8--delta 7 isomerization, and C-24 transmethylation. Strain N3H was found to be defective in delta 5-desaturation as well as in delta 24(28)-reduction. However, the defect of N26 and N3H was suggested to be leaky, since small amounts of ergosterol and ergosta-7,22-dienol were found in these mutants, respectively. In N15, an accumulation (2% in total sterols) of the compound likely to be hydroxylated sterol was found. By aerobic adaptation of these strains, the accumulation of these strains, the accumulations of ergosta-7,22-dienol (22 mg/g dry cells), ergosta-7,22,24(28)-trienol (24 mg), ergosta-8,24(28)-dienol (18 mg), and cholesta-8,24-dienol (22 mg) reached a maximum in N3, N3H, N15, and N26 after 20, 20, 30, and 30 h, respectively. These strains appear to be useful for making 14C-labeled and non-labeled preparations of the above sterols.  相似文献   

13.
Five unsaturated sterols relevant to the Smith-Lemli-Opitz syndrome have been prepared in high radiochemical purity with a tritium label at the 3alpha position. Swern oxidation of cholesta-5,8-dien-3beta-ol and other unlabeled C27 sterols afforded the corresponding 3-ketosteroids, and reduction with tritiated NaBH4 gave the desired 3alpha-3H sterols, with double bonds at the delta(5,8), delta(5,8(14)), delta(6,8), delta(6,8(14)), and delta8 positions. High radiochemical purity of the tritiated sterols was demonstrated by normal phase, reversed phase, and silver-ion (Ag+) high-performance liquid chromatography (HPLC). In the course of this work, we developed a medium-pressure variant of Ag+-HPLC for purifying radiolabeled samples, documented significant isotopic fractionation of the 3alpha-tritiated sterols and their acetates on Ag+-HPLC, and discovered unexpected effects of a delta(8(14)) bond on the conformation of 3-keto-delta5-steroids. The synthetic and analytical methodologies described herein should provide a sound basis for investigating the origin and metabolism of sterols involved in the Smith-Lemli-Opitz syndrome and in late stages of cholesterol biosynthesis.  相似文献   

14.
Ruan B  Lai PS  Yeh CW  Wilson WK  Pang J  Xu R  Matsuda SP  Schroepfer GJ 《Steroids》2002,67(13-14):1109-1119
Yeast produce traces of aberrant sterols by minor alternative pathways, which can become significant when normal metabolism is blocked by inhibitors or mutations. We studied sterols generated in the absence of the delta(8)-delta(7) isomerase (Erg2p) or delta(5) desaturase (Erg3p) by incubating three mutant strains of Saccharomyces cerevisiae with 5 alpha-cholest-8-en-3beta-ol, 8-dehydrocholesterol (delta(5,8) sterol), or isodehydrocholesterol (delta(6,8) sterol), together with the corresponding 3 alpha-3H isotopomer. Nine different incubations gave altogether 16 sterol metabolites, including seven delta(22E) sterols formed by action of the yeast C-22 desaturase (Erg5p). These products were separated by silver-ion high performance liquid chromatography (Ag(+)-HPLC) and identified by gas chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy, and radio-Ag(+)-HPLC. When delta(8)-delta(7) isomerization was blocked, exogenous delta(8) sterol underwent desaturation to delta(5,8), delta(6,8), and delta(8,14) sterols. Formation of delta(5,8) sterol was strongly favored over delta(6,8) sterol, but both pathways are essentially dormant under normal conditions of sterol synthesis. The delta(5,8) sterol was metabolically almost inert except for delta(22) desaturation, whereas the delta(6,8) sterol was readily converted to delta(5,7), delta(5,7,9(11)), and delta(7,9(11)) sterols. The combined results indicate aberrant metabolic pathways similar to those in mammalian systems. However, delta(5,7) sterol undergoes only slight isomerization or desaturation in yeast, an observation that accounts for the lower levels of delta(5,8) and delta(5,7,9(11)) sterols in wild-type yeast compared to Smith-Lemli-Opitz individuals.  相似文献   

15.
Hepatic regulatory oxysterols were analyzed to determine which oxysterols were present in livers of mice fed a cholesterol-free diet and whether repression of 3-hydroxy-3-methylglutaryl-CoA reductase following cholesterol feeding was accompanied by an increase in one or more oxysterols. Analysis of free and esterified sterols from mice fed a cholesterol-free diet resulted in the identification and quantitation of six regulatory oxysterols: 24-hydroxycholesterol, 25-hydroxycholesterol, 26-hydroxycholesterol, 7 alpha-hydroxycholesterol, 7 beta-hydroxycholesterol, and 7-ketocholesterol. Following the addition of cholesterol to the diet for 1 or 2 nights, hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity declined and the levels of oxysterols, especially those of the side-chain-hydroxylated sterols, increased. Total 3-hydroxy-3-methylglutaryl-CoA reductase repressor units attributable to identified free oxysterols increased 2.5- and 6-fold after 1 and 2 nights, respectively, of cholesterol feeding. The amounts of esterified 24-, 25-, and 26-hydroxycholesterol also increased, with the increase in esterified 24-hydroxycholesterol being the greatest. The 24-hydroxycholesterol was predominantly the 24S epimer and the 26-hydroxycholesterol was predominantly the 25R epimer, indicating enzymatic catalysis of their formation. The observed correlation between increased levels of regulatory oxysterols and repression of 3-hydroxy-3-methylglutaryl-CoA reductase in cholesterol-fed mice is consistent with a hypothesis that intracellular oxysterol metabolites regulate the level of the reductase.  相似文献   

16.
The spatial structure of "long" toxin 3 Naja naja siamensis in solution has been studied by methods of two-dimensional (2D) 1H NMR spectroscopy. The individual signal assignments for 67 out of 71 residues and analysis of nuclear Overhauser effects between distinct protons of the molecule allowed the comparison of the toxin 3 conformations at different pH values and temperatures. It was shown that the deprotonated imidazole ring of His22 residue (at pH greater than or equal to 7,5) is surrounded by the side chains of Cys17, Pro18, Val23, Cys24, Cys45, Ala46 and Thr48 residues. On the contrary, the protonated imidazole ring of His22 (at pH less than 4,0) is exposed into solvent. Ionization of His22 is accompanied by a change in the Tyr25 aromatic ring orientation and affects the conformational mobility of the Cys17, His22, Cys45 and Ala47 side chains. The revealed conformational features of toxin 3 in solution are discussed in connection with the differences between "long" and "short" neurotoxins in the kinetics of their binding to acetylcholine receptor.  相似文献   

17.
Sterol carrier protein 2 (SCP-2) participates in the microsomal conversion of lanosterol to cholesterol, in the conversion of cholesterol to cholesterol ester, and in intracellular cholesterol transfers. The stoichiometry of binding between cholesterol and SCP-2 is 1:1. However, reports have appeared attributing sterol carrier protein activity to a protein preparation identical to hepatic fatty acid-binding protein (FABP). Therefore, the present investigation was conducted to compare homogeneous preparations of FABP and SCP-2 with respect to their capacities to participate as carrier proteins in reactions involving sterols or fatty acids. The results show that SCP-2 and FABP have separate and distinct physiological functions, with SCP-2 participating in reactions involving sterols and FABP participating in reactions involving fatty acid binding and/or transport. Furthermore, there is no overlap in substrate specificities, i.e. FABP does not possess sterol carrier protein activity and SCP-2 does not specifically bind or transport fatty acid. As long as only small quantities of organic solvent (1.6 volume %) were used for substrate addition, the sterol delta 7-reductase liver microsomal assay for SCP-2 correlated well with the physiologically relevant assays employed in the reconstituted adrenal system. The sterol carrier protein activity previously attributed to rat hepatic FABP is explained by the presence of significant quantities of propylene glycol (15 volume %) or Tween 80 in the assay procedure.  相似文献   

18.
Insects are increasingly being recognized not only as a source of food to feed the ever growing world population but also as potential sources of new products and therapeutic agents, among which are sterols. In this study, we sought to profile sterols and their derivatives present in the desert locust, Schistocerca gregaria, focusing on those with potential importance as dietary and therapeutic components for humans. Using coupled gas chromatography-mass spectrometry (GC-MS), we analyzed and compared the quantities of sterols in the different sections of the gut and tissues of the locust. In the gut, we identified 34 sterols which showed a patchy distribution, but with the highest composition in the foregut (55%) followed by midgut (31%) and hindgut (14%). Fed ad libitum on wheat seedlings, five sterols unique to the insect were detected. These sterols were identified as 7-dehydrocholesterol, desmosterol, fucosterol, (3β, 5α) cholesta-8, 14, 24-trien-3-ol, 4, 4-dimethyl, and (3β, 20R) cholesta-5, 24-dien-3, 20-diol with the first three having known health benefits in humans. Incubation of the fore-, mid- and hindgut with cholesterol-[4-13C] yielded eight derivatives, three of these were detected in the gut of the desert locust after it had consumed the vegetative diet but were not detected in the diet. Our study shows that the desert locust ingests phytosterols from a vegetative diet and, amplifies and metabolizes them into derivatives with potential salutary benefits and we discuss our findings in this context.  相似文献   

19.
Trifluperidol (TFP), at a concentration of 100 muM, inhibited the 24-h growth of Saccharomyces cerevisiae by about 30%. Effects on lipid metabolism were investigated by monitoring the incorporation of [1-14C]sodium acetate into various lipid fractions after 4 and 24 h of growth in the presence of several concentrations of TFP. Although little effect was noted on the amount of free sterols, 24-h incorporation of label into steryl esters was increased two- to fourfold by 100 muM TFP. Major sterol components of the steryl ester fraction isolated from an untreated culture were zymosterol (48%) and ergosterol (24%), whereas from the TFP-treated culture delta8,24(28)-ergostadienol (66.6%) and delta8-ergostenol (14.7%) were most abundant. Free sterols present in the highest concentration in the untreated culture were ergosterol (78.2%) and lanosterol (13%); whereas delta8,22-ergostadienol (38.5%), delta8-ergostenol (35.4%), and delta8,24(28)-ergostadienol (25.4%) were the most abundant free sterols obtained from the TFP-treated culture. Thus, the major block in the sterol biosynthetic pathway in yeast appears to be delta8 leads to delta7 isomerization. In these same cultures the relative amounts of C12 and C14 acids isolated from both steryl ester and miscellaneous lipid fractions were increased more than threefold over controls.  相似文献   

20.
We have investigated the metabolism of exogenously provided delta24-sterols by whole cell cultures of a polyene-resistant mutant (D10) of Candida albicans blocked at removal of the C-14 methyl group. Comparison of the relative efficiencies of transmethylation at C-24 of selected sterol substrates revealed the following substrate preferences of the Candida delta24-sterol methyltransferase (EC 2.1.1.41): zymosterol greater than 4alpha-methylzymosterol greater than 14alpha-methylzymosterol. Exogenous 4,4-dimethylzymosterol was not transmethylated by mutant D10. Incorporation of the 14C-labelled methyl group of S-adenosyl-L-[methyl-14C]methionine into the sterols of a D10 culture preloaded with zymosterol indicated that zymosterol was a better (40 X) substrate than endogenous lanosterolmfeeding zymosterol to D10 and a polyene-resistant strain of Saccharomyces cerevisiae (Nys-P100) that was also blocked at removal of the C-14 methyl group gave 24-methyl sterols possessing delta22 and ring B unsaturation. Mutant D10 was able to produce ergosterol from zymosterol whereas Nys-P100 produced ergosta-7,22-dienol. When grown in the presence of 3 micrometer 25-aza-24,25-dihydrozymosterol, a known inhibitor of the delta24-sterol methyltransferase, Nys-P100 accumulated 14alpha-methylzymosterol, a minor metabolite in this mutant under normal growth conditions and hitherto unidentified as a yeast sterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号