首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yang ES  Park JW 《BMB reports》2011,44(5):312-316
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridium ion (MPP(+)) have been shown to induce Parkinson's disease-like symptoms as well as neurotoxicity in humans and animal species. Recently, we reported that maintenance of redox balance and cellular defense against oxidative damage are primary functions of the novel antioxidant enzyme cytosolic NADP(+) -dependent isocitrate dehydrogenase (IDPc). In this study, we examined the role of IDPc in cellular defense against MPP(+) -induced oxidative injury using PC12 cells transfected with IDPc small interfering RNA (siRNA). Our results demonstrate that MPP(+) -mediated disruption of cellular redox status, oxidative damage to cells, and apoptotic cell death were significantly enhanced by knockdown of IDPc.  相似文献   

2.
NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46-48 population doubling level (PDL) and then gradually decreased at later PDL. 2',7'-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.  相似文献   

3.
Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.  相似文献   

4.
Inactivation of NADP(+)-dependent isocitrate dehydrogenase by nitric oxide   总被引:5,自引:0,他引:5  
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through to supply NADPH for antioxidant systems. NO donors such as S-nitrosothiols, diethylamine NONOate, spermine NONOate, and 3-morpholinosydnomine N-ethylcarbamide (SIN-1)/superoxide dismutase inactivated ICDH in a dose- and time-dependent manner. The inhibition of ICDH by S-nitrosothiol was partially reversed by thiol, such as dithiothreitol or 2-mercaptoethanol. Loss of enzyme activity was associated with the depletion of the cysteine-reactive 5,5'-dithiobis-(2-nitrobenzoate) and the loss of fluorescent probe N,N'-dimethyl-N(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethyleneamine accessible thiol groups. Using electrospray ionization mass spectrometry with tryptic digestion of protein, we found that nitric oxide forms S-nitrosothiol adducts on Cys305 and Cys387. These results indicate that S-nitrosylation of cysteine residues on ICDH is a mechanism involving the inactivation of ICDH by NO. The structural alterations of modified enzyme were indicated by the changes in protease susceptibility and intrinsic tryptophan fluorescence. When U937 cells were incubated with 200 microM SNAP for 1 h, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed. Furthermore, stimulation with lipopolysaccharide significantly decreased intracellular ICDH activity in RAW 264.7 cells, and this effect was blocked by NO synthase inhibitor N(omega)-methyl-L-arginine. This result indicates that ICDH was also inactivated by endogenous NO. The NO-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

5.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of IDPm against heat shock in HEK293 cells, an embryonic kidney cell line, was investigated in control and cells transfected with the cDNA for IDPm, where IDPm activity was 6–7 fold higher than that in the control cells carrying the vector alone. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in control cells as compared to HEK293 cells in which IDPm was over-expressed. We also observed the significant difference in the cellular redox status reflected by the endogenous production of reactive oxygen species, NADPH pool and GSH recycling between two cells. The results suggest that IDPm plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of reactive oxygen species.  相似文献   

6.
Singlet oxygen ( 1 O 2 ) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP + -dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP + -dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.  相似文献   

7.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of IDPm against heat shock in HEK293 cells, an embryonic kidney cell line, was investigated in control and cells transfected with the cDNA for IDPm, where IDPm activity was 6-7 fold higher than that in the control cells carrying the vector alone. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in control cells as compared to HEK293 cells in which IDPm was over-expressed. We also observed the significant difference in the cellular redox status reflected by the endogenous production of reactive oxygen species, NADPH pool and GSH recycling between two cells. The results suggest that IDPm plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of reactive oxygen species.  相似文献   

8.
Lee SM  Huh TL  Park JW 《Biochimie》2001,83(11-12):1057-1065
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through supply of NADPH for antioxidant systems. When exposed to various reactive oxygen species such as hydrogen peroxide, singlet oxygen generated by photoactivated dye, superoxide anion, and hydroxyl radical produced by metal-catalyzed Fenton reactions, ICDH was susceptible to oxidative modification and damage, which was indicated by the loss of activity, fragmentation of the peptide as well as by the formation of carbonyl groups. Oxidative damage to ICDH was inhibited by antioxidant enzymes, free radical scavengers, and spin-trapping agents. The structural alterations of modified enzymes were indicated by the increase in thermal instability and binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANSA). The reactive oxygen species-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

9.
NADPH is an essential cofactor for many enzymatic reactions including glutathione metabolism and fat and cholesterol biosynthesis. We have reported recently an important role for mitochondrial NADP(+)-dependent isocitrate dehydrogenase in cellular defense against oxidative damage by providing NADPH needed for the regeneration of reduced glutathione. However, the role of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is still unclear. We report here for the first time that IDPc plays a critical role in fat and cholesterol biosynthesis. During differentiation of 3T3-L1 adipocytes, both IDPc enzyme activity and its protein content were increased in parallel in a time-dependent manner. Increased expression of IDPc by stable transfection of IDPc cDNA positively correlated with adipogenesis of 3T3-L1 cells, whereas decreased IDPc expression by an antisense IDPc vector retarded adipogenesis. Furthermore, transgenic mice with overexpressed IDPc exhibited fatty liver, hyperlipidemia, and obesity. In the epididymal fat pads of the transgenic mice, the expressions of adipocyte-specific genes including peroxisome proliferator-activated receptor gamma were markedly elevated. The hepatic and epididymal fat pad contents of acetyl-CoA and malonyl-CoA in the transgenic mice were significantly lower, whereas the total triglyceride and cholesterol contents were markedly higher in the liver and serum of transgenic mice compared with those measured in wild type mice, suggesting that the consumption rate of those lipogenic precursors needed for fat biosynthesis must be increased by elevated IDPc activity. Taken together, our findings strongly indicate that IDPc would be a major NADPH producer required for fat and cholesterol synthesis.  相似文献   

10.
Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury.  相似文献   

11.
The isocitrate dehydrogenases (ICDs) catalyse the oxidative decarboxylation of isocitrate to alpha-ketoglutarate and can use either NAD(+) or NADP(+) as a cofactor. Recent studies demonstrate that the NADP(+)-dependent isocitrate dehydrogenase, as a source of electrons for cellular antioxidants, is important for protection against oxidative damage. ICD, however, is susceptible to oxidative inactivation, which in turn compromises cellular antioxidant defense. This study investigates the effect of a superoxide dismutase (SOD) mimic, MnTM-2-PyP(5+), on the inactivation of NADP(+)-dependent ICD in SOD-deficient Escherichia coli and in diabetic rats. The findings show that E. coli ICD is inactivated by superoxide, but the inactivated enzyme is replaced by de novo protein synthesis. Statistically significant decrease of ICD activity was found in the hearts of diabetic rats. MnTM-2-PyP(5+) protected ICD in both models.  相似文献   

12.
Curcumin is a polyphenol derived from the plant Curcuma longa that induces apoptotic cell death in malignant cancer cell lines. It has been shown previously that mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) plays an essential role in defense against oxidative stress by supplying NADPH for antioxidant systems. This study demonstrates that curcumin decreased the activity of IDPm, both as a purified enzyme and in cultured cells. It also shows that curcumin-induced apoptosis in the colon cancer cell line HCT116 is significantly enhanced by suppression of IDPm activity. Transfection of HCT116 cells with an IDPm small interfering RNA (siRNA) markedly decreased activity of IDPm, enhancing cellular susceptibility to curcumin-induced apoptosis, as reflected by DNA fragmentation, cellular redox status, mitochondria dysfunction and modulation of apoptotic marker proteins. Together, these results suggest that application of curcumin together with IDPm siRNA may be an effective combination modality in the treatment of cancer.  相似文献   

13.
Cytoplasmic NADP(+)-dependent isocitrate dehydrogenase (isocitrate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42) was purified 290-fold from the 15,000 x g supernatant fraction of porcine corpora lutea. The major purification step was by anion-exchange chromatography with an FPLC mono P column. Enzyme lability was overcome by including Mg2+, DL-isocitrate, dithiothreitol and glycerol in the elution buffers. The molecular weight of the denatured enzyme was found to be 48,000 by SDS-polyacrylamide gel electrophoresis. The Stokes' radius was estimated to be 3.7 nm by gel filtration and the isoelectric point was 4.8 as determined by chromatofocusing. The purified enzyme had a specific activity of 57.8 units/mg and a broad optimal pH for activity from 7.5 to 9.0. The Km for the substrates DL-isocitrate and NADP+ were 13 and 12 microM, respectively. Polyclonal antibodies were raised against the purified enzyme. Protein (Western) blotting showed an immunological similarity between the cytoplasmic enzyme of the ovary, liver, adrenal gland and heart. A difference was demonstrated between the ovarian enzyme and the heart mitochondrial enzyme. The substrate turnover number and Mr of the ovarian enzyme were similar to those found for the enzyme from the liver and adrenal gland.  相似文献   

14.
Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.  相似文献   

15.
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH), because it supplies NADPH for antioxidant systems. When exposed to reducing sugars such as glucose, glucose 6-phosphate, and fructose, ICDH was susceptible to oxidative modification and damage, which was indicated by a loss of activity and fragmentation of the peptide as well as by the formation of carbonyl groups. The glycated ICDH was isolated and identified by boronate-affinity chromatography and immunoblotting with anti-hexitol-lysine antibody. The active site lysine residue, Lys(212), was identified as one of the major sites of nonenzymatic glycation of ICDH. The structural alterations of modified enzymes were indicated by changes in thermal stability, intrinsic tryptophan fluorescence, and binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid. When we examined the antioxidant role of mitochondrial ICDH against glycation-induced cytotoxicity with HEK293 cells transfected with the cDNA for mouse mitochondrial ICDH in sense and antisense orientations, a clear inverse relationship was observed between the amount of mitochondrial ICDH expressed in target cells and their susceptibility to glycation-mediated cytotoxicity. Mitochondrial ICDH was purified by immunoprecipitation and probed with anti-hexitol-lysine antibody, which revealed increased levels of glycated ICDH in the kidneys of diabetic rats and in the lenses of diabetic patients suffering from cataracts. A decrease in ICDH activity was observed in those tissues. We also found that levels of glycated ICDH increased in IMR-90 cells and rat kidney during normal aging. The glycation-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition and may contribute to various pathologies associated with the general aging process and long-term complications of diabetes.  相似文献   

16.
Mitochondria are the major organelles that produce reactive oxygen species (ROS) and the main target of ROS-induced damage as observed in various pathological states including aging. Production of NADPH required for the regeneration of glutathione in the mitochondria is critical for scavenging mitochondrial ROS through glutathione reductase and peroxidase systems. We investigated the role of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) in controlling the mitochondrial redox balance and subsequent cellular defense against oxidative damage. We demonstrate in this report that IDPm is induced by ROS and that decreased expression of IDPm markedly elevates the ROS generation, DNA fragmentation, lipid peroxidation, and concurrent mitochondrial damage with a significant reduction in ATP level. Conversely, overproduction of IDPm protein efficiently protected the cells from ROS-induced damage. The protective role of IDPm against oxidative damage may be attributed to increased levels of a reducing equivalent, NADPH, needed for regeneration of glutathione in the mitochondria. Our results strongly indicate that IDPm is a major NADPH producer in the mitochondria and thus plays a key role in cellular defense against oxidative stress-induced damage.  相似文献   

17.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.  相似文献   

18.
Human PICD was identified by homology probing the data base of expressed sequence tags with the protein sequence of Saccharomyces cerevisiae Idp3p, a peroxisomal NADP(+)-dependent isocitrate dehydrogenase. The human PICD cDNA contains a 1242-base pair open reading frame, and its deduced protein sequence is 59% identical to yeast Idp3p. Expression of PICD partially rescued the fatty acid growth defect of the yeast idp3 deletion mutant suggesting that PICD is functionally homologous to Idp3p. Kinetic studies on bacterially expressed PICD demonstrated that this enzyme catalyzed the oxidative decarboxylation of isocitrate to 2-oxoglutarate with a specific activity of 22.5 units/mg and that PICD displayed K(M) values of 76 microM for isocitrate and 112 microM for NADP(+). In subcellular fractionation experiments, we found PICD in both peroxisomes and cytoplasm of human and rat liver cells, with approximately 27% of total PICD protein associated with peroxisomes. The presence of PICD in mammalian peroxisomes suggests roles in the regeneration of NADPH for intraperoxisomal reductions, such as the conversion of 2, 4-dienoyl-CoAs to 3-enoyl-CoAs, as well as in peroxisomal reactions that consume 2-oxoglutarate, namely the alpha-hydroxylation of phytanic acid. As for cytoplasmic PICD, the phenotypes of patients with glucose-6-phosphate dehydrogenase deficiency (Luzzatto, L., and Mehta, A. (1995) in The Metabolic and Molecular Bases of Inherited Disease (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds) Vol. 3, 7th Ed., pp. 3367-3398, McGraw-Hill Inc., New York) suggest that PICD serves a significant role in cytoplasmic NADPH production, particularly under conditions that do not favor the use of the hexose monophosphate shunt (Luzzatto et al.).  相似文献   

19.
Kim SY  Tak JK  Park JW 《Biochimie》2004,86(8):501-507
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. When exposed to a singlet oxygen-producing system composed of rose bengal (RB) and visible light, ICDH was susceptible to oxidative modification and damage as indicated by the loss of activity and by the formation of carbonyl groups. The structural alterations of modified enzyme were indicated by the increase in susceptibility to proteases and the change in intrinsic fluorescence spectra. Upon exposure to photoactivated RB, a significant decrease in both cytosolic and mitochondrial ICDH activities was observed in HL-60 cells. The singlet oxygen-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition. When we examined the antioxidant role of cytosolic ICDH against singlet oxygen-induced damage with HL-60 cells transfected with the cDNA for mouse cytosolic ICDH in sense and antisense orientations, a clear inverse relationship was observed between the amount of cytosolic ICDH expressed in target cells and their susceptibility to singlet oxygen-mediated oxidative damage.  相似文献   

20.
Abstract

NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP+-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46–48 population doubling level (PDL) and then gradually decreased at later PDL. 2′,7′-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号