首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
H2-dependent reduction of fumarate and nitrate by spheroplasts from Escherichia coli is coupled to the translocation of protons across the cytoplasmic membrane. The leads to H+/2e- stoicheiometry (g-ions of H+ translocated divided by mol of H2 added) is approx. 2 with fumarate and approx. 4 with nitrate as electron acceptor. This proton translocation is dependent on H2 and a terminal electron acceptor and is not observed in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone and the respiratory inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide. H2-dependent reduction of menadione and ubiquinone-1 is coupled to a protonophore-sensitive, but 2-n-heptyl-4-hydroxy-quinoline N-oxide-insensitive, proton translocation with leads to H+/2e- stoicheiometry of approx. 2. H2-dependent reduction of Benzyl Viologen (BV++) to its radical (BV+) liberates protons at the periplasmic aspect of the cytoplasmic membrane according to the reaction: H2 + 2BV++ leads to 2H+ + 2BV+. It is concluded that the effective proton translocation observed in the H2-oxidizing segment of the anaerobic respiratory chain of Escherichia coli arises as a direct and inevitable consequence of transmembranous electron transfer between protolytic reactions that are spatially separated by a membrane of low proton-permeability.  相似文献   

2.
Low concentrations (1-50mum) of ubiquinol(1) were rapidly oxidized by spheroplasts of Escherichia coli derepressed for synthesis of nitrate reductase using either nitrate or oxygen as electron acceptor. Oxidation of ubiquinol(1) drove an outward translocation of protons with a corrected -->H(+)/2e(-) stoichiometry [Scholes & Mitchell (1970) J. Bioenerg.1, 309-323] of 1.49 when nitrate was the acceptor and 2.28 when oxygen was the acceptor. Proton translocation driven by the oxidation of added ubiquinol(1) was also observed in spheroplasts from a double quinone-deficient mutant strain AN384 (ubiA(-)menA(-)), whereas a haem-deficient mutant, strain A1004a, did not oxidize ubiquinol(1). Proton translocation was not observed if either the protonophore carbonyl cyanide m-chlorophenylhydrazone or the respiratory inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide was present. When spheroplasts oxidized Diquat radical (DQ(+)) to the oxidized species (DQ(++)) with nitrate as acceptor, nitrate was reduced to nitrite according to the reaction: [Formula: see text] and nitrite was further reduced in the reaction: [Formula: see text] Nitrite reductase activity (2) was inhibited by CO, leaving nitrate reductase activity (1) unaffected. Benzyl Viologen radical (BV(+)) is able to cross the cytoplasmic membrane and is oxidized directly by nitrate reductase to the divalent cation, BV(++). In the presence of CO, this reaction consumes two protons: [Formula: see text] The consumption of these protons could not be detected by a pH electrode in the extra-cellular bulk phase of a suspension of spheroplasts unless the cytoplasmic membrane was made permeable to protons by the addition of nigericin or tetrachlorosalicylanilide. It is concluded that the protons of eqn. (3) are consumed at the cytoplasmic aspect of the cytoplasmic membrane. Diquat radical, reduced N-methylphenazonium methosulphate and its sulphonated analogue N-methylphenazonium-3-sulphonate (PMSH) and ubiquinol(1) are all oxidized by nitrate reductase via a haem-dependent, endogenous quinone-independent, 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive pathway. Approximate-->H(+)/2e(-) stoichiometries were zero with Diquat radical, an electron donor, 1.0 with reduced N-methylphenazonium methosulphate or its sulphonated analogue, both hydride donors, and 2.0 with ubiquinol(1) (QH(2)), a hydrogen donor. It is concluded that the protons appearing in the medium are derived from the reductant and the observed-->H(+)/2e(-) stoichiometries are accounted for by the following reactions occurring at the periplasmic aspect of the cytoplasmic membrane.: [Formula: see text]  相似文献   

3.
Escherichia coli grown anaerobically on nitrate exhibited the same transport barrier to reduction of chlorate, relative to nitrate, as that exhibited by Paracoccus denitrificans. This establishes that the nitrate binding site of nitrate reductase (EC 1.7.99.4) in E. coli must also lie on the cell side of the nitrate transporter which is associated with the plasma membrane. Because nitrate reductase is membrane bound, the nitrate binding site is thus located on the inner aspect of the membrane. Nitrate pulse studies on E. coli in the absence of valinomycin showed a small transient alkalinization (leads to H+/NO3- congruent to --0.07) which did not occur with oxygen pulses. By analogy with P. denitrificans, the alkaline transient is interpreted to arise from proton-linked nitrate uptake which is closely followed by nitrite efflux. The result is consistent with internal reduction of nitrate, whereas external reduction would be expected to give leads to H+/NO3-ratios approaching --2.  相似文献   

4.
13NO3 was used to determine the intracellular compartmentation of NO3 in barley roots (Hordeum vulgare cv. Klondike), followed by a thermodynamic analysis of nitrate transport.Plants were grown in one-tenth Johnson's medium with 1 mol m3 NO3 (NO3-grown plants) or 1 mol m3 NH4NO3 (NH4NO3-grown plants).The cytoplasmic concentrations of NO3 in roots were only approx. 3-6 mol m3 (half-time for exchange approx. 21 s) in both NO3 and NH4NO3 plants. These pool sizes are consistent with published nitrate microelectrode data, but not with previous compartmental analyses.The electrochemical potential gradient for nitrate across the plasmalemma was +26 +/-1 kJ mol1 in both NO3- and NH4NO3-grown plants, indicating active uptake of nitrate. At an external pH of 6, the plasmalemma electrochemical potential for protons would be approx. -29 +/- 4 kJ mol1. If the cytoplasmic pH was 7.3 +/- 0.2, then 2H+/1NO3 cotransport, or a primary ATP-driven pump (2NO3/1ATP), are both thermodynamically possible. NO3 is also actively transported across the tonoplast (approx. +6 to 7 kJ mol1).  相似文献   

5.
Hydrogenase and fumarate reductase isolated from Wolinella succinogenes were incorporated into liposomes containing menaquinone. The two enzymes were found to be oriented solely to the outside of the resulting proteoliposomes. The proteoliposomes catalyzed fumarate reduction by H2 which generated an electrical proton potential (Delta(psi) = 0.19 V, negative inside) in the same direction as that generated by fumarate respiration in cells of W. succinogenes. The H+/e ratio brought about by fumarate reduction with H2 in proteoliposomes in the presence of valinomycin and external K+ was approximately 1. The same Delta(psi) and H+/e ratio was associated with the reduction of 2,3-dimethyl-1,4-naphthoquinone (DMN) by H2 in proteoliposomes containing menaquinone and hydrogenase with or without fumarate reductase. Proteoliposomes containing menaquinone and fumarate reductase with or without hydrogenase catalyzed fumarate reduction by DMNH2 which did not generate a Delta(psi). Incorporation of formate dehydrogenase together with fumarate reductase and menaquinone resulted in proteoliposomes catalyzing the reduction of fumarate or DMN by formate. Both reactions generated a Delta(psi) of 0.13 V (negative inside). The H+/e ratio of formate oxidation by menaquinone or DMN was close to 1. The results demonstrate for the first time that coupled fumarate respiration can be restored in liposomes using the well characterized electron transport enzymes isolated from W. succinogenes. The results support the view that Delta(psi) generation is coupled to menaquinone reduction by H2 or formate, but not to menaquinol oxidation by fumarate. Delta(psi) generation is probably caused by proton uptake from the cytoplasmic side of the membrane during menaquinone reduction, and by the coupled release of protons from H2 or formate oxidation on the periplasmic side. This mechanism is supported by the properties of two hydrogenase mutants of W. succinogenes which indicate that the site of quinone reduction is close to the cytoplasmic surface of the membrane.  相似文献   

6.
The ability of the oxidized and singly reduced species of several bipyridylium cations to cross the cytoplasmic membrane of Escherichia coli was studied to locate the sites of reaction of the dyes with anaerobic respiratory enzymes. Benzyl Viologen radical crossed the membrane rapidly, whereas the oxidized species did not. The oxidized or radical species of Methyl Viologen, Morfamquat or Diquat did not rapidly cross the membrane. It was also shown that the dithionite anion does not cross the cytoplasmic membrane of E. coli. Diquat radical donates electrons to the nitrate reductase pathway at the periplasmic aspect of the membrane, whereas Benzyl Viologen radical reacted directly with nitrate reductase itself (EC 1.7.99.4) at the cytoplasmic aspect of the membrane. Thus the pathway of electron transfer in the nitrate reductase pathway is transmembranous. Formate hydrogenlyase (EC 1.2.1.2) and an uncharacterized nitrite reductase activity react with bipyridylium dyes at the periplasmic aspect of the membrane. Fumarate reductase (succinate dehydrogenase; EC 1.3.99.1) reacts with bipyridylium radicals, and formate dehydrogenase (cytochrome) (EC 1.2.2.1) with ferricyanide, at the cytoplasmic aspect of the membrane. The differing charge and membrane permeation of oxidized and radical species of bipyridylium dyes greatly complicate their use as potentiometric mediators in suspensions of cells or membrane vesicles.  相似文献   

7.
Summary A crude cell envelope suspension has been prepared from Proteus mirabilis after osmotic shock of penicillin-induced spheroplasts. Employing discontinuous sucrose gradients this cell envelope suspension can be fractionated into four fractions. Besides a pellet of remaining spheroplasts and an intermediate fraction with mixed composition a highly purified cytoplasmic membrane fraction and an outer membrane fraction have been obtained. The cytoplasmic membrane fraction is not contaminated with mucopeptide or outer membrane material. It has a buoyant density of 1.13 g/ml and a protein content of 38%. The specific activities of formate dehydrogenase and nitrate reductase and the content of cytochrome b1 have increased sixfold in comparison with the crude cell envelope suspension. The outer membrane fraction contains only few contaminations with cytoplasmic membrane components and with mucopeptide.The gradient fractions have been characterized by electron microscopy and by polyacrylamide gel electrophoresis.  相似文献   

8.
1. A method is described for preparing spheroplasts from Paracoccus denitrificans that are substantially depleted of dissimilatory nitrate reductase (cytochrome cd) activity. Treatment of cells with lysozyme + EDTA together with a mild osmotic shock, followed by centrifugation, yielded a pellet of spheroplasts and a supernatant that contained d-type cytochrome. The spheroplasts were judged to have retained an intact plasma membrane on the basis that less than 1% of the activity of a cytoplasmic marker protein, malate dehydrogenase, was released from the spheroplasts. In addition to a low activity towards added nitrite, the suspension of spheroplasts accumulated the nitrite that was produced by respiratory chain-linked reduction of nitrate. It is concluded that nitrate reduction occurs at the periplasmic side of the plasma membrane irrespective of whether nitrite is generated by nitrate reduction or is added exogenously. 2. Further evidence for the integrity of the spheroplasts was that nitrate reduction was inhibited by O2, and that chlorate was reduced at a markedly lower rate than nitrate. These data are taken as evidence for an intact plasma membrane because it was shown that cells acquire the capability to reduce nitrate under aerobic conditions after addition of low amounts of Triton X-100 which, with the same titre, also overcame the permeability barrier to chlorate reduction by intact cells. The close relationship between the appearance of chlorate reduction and the loss of the inhibitory effect of O2 on nitrate reduction also suggests that the later feature of nitrate respiration is due to a control on the accessibility of nitrate to its reductase rather than on the flow of electrons to nitrate reductase.  相似文献   

9.
1. Proteus mirabilis formed fumarate reductase under anaerobic growth conditions. The formation of this reductase was repressed under conditions of growth during which electron transport to oxygen or to nitrate is possible. In two of three tested chlorate-resistant mutant strains of the wild type, fumarate reductase appeared to be affected. 2. Cytoplasmic membrane suspensions isolated from anaerobically grown P. mirabilis oxidized formate and NADH with oxygen and with fumarate, too. 3. Spectral investigation of the cytoplasmic membrane preparation revealed the presence of (probably at least two types of) cytochrome b, cytochrome a1 and cytochrome d. Cytochrome b was reduced by NADH as well as by formate to approximately 80%. 4. 2-n-Heptyl-4-hydroxyquinilone-N-oxide and antimycin A inhibited oxidation of both formate and NADH by oxygen and fumarate. Both inhibitors increased the level of the formate/oxygen steady state and the formate/fumarate steady state. 5. The site of inhibition of the respiratory activity by both HQNO and antimycin A was located at the oxidation side of cytochrome b. 6. The effect of ultraviolet-irradiation of cytoplasmic membrane suspensions on oxidation/reduction phenomena suggested that the role of menaquinone is more exclusive in the formate/fumarate pathway than in the electron transport route to oxygen. 7. Finally, the conclusion has been drawn that the preferential route for electron transport from formate and from NADH to fumarate (and to oxygen) includes cytochrome b as a directly involved carrier. A hypothetical scheme for the electron transport in anaerobically grown P. mirabilis is presented.  相似文献   

10.
Various dehydrogenases, reductases, and electron transfer proteins involved in respiratory sulfate reduction by Desulfovibrio gigas have been localized with respect to the periplasmic space, membrane, and cytoplasm. This species was grown on a lactate-sulfate medium, and the distribution of enzyme activities and concentrations of electron transfer components were determined in intact cells, cell fractions prepared with a French press, and lysozyme spheroplasts. A significant fraction of formate dehydrogenase was demonstrated to be localized in the periplasmic space in addition to hydrogenase and some c-type cytochrome. Cytochrome b, menaquinone, fumarate reductase, and nitrite reductase were largely localized on the cytoplasmic membrane. Fumarate reductase was situated on the inner aspect on the membrane, and the nitrite reductase appeared to be transmembraneous. Adenylylsulfate reductase, bisulfite reductase (desulfoviridin), pyruvate dehydrogenase, and succinate dehydrogenase activities were localized in the cytoplasm. Significant amounts of hydrogenase and c-type cytochromes were also detected in the cytoplasm. Growth of D. gigas on a formate-sulfate medium containing acetate resulted in a 10-fold increase in membrane-bound formate dehydrogenase and a doubling of c-type cytochromes. Growth on fumarate with formate resulted in an additional increase in b-type cytochrome compared with lactate-sulfate-grown cells.  相似文献   

11.
The effect of NO3- uptake on cellular pH was studied in maize roots by an in vivo 31P-NMR technique. In order to separate the effects on cytoplasmic pH due to NO3- uptake from those due to NO3- reduction, tungstate was used to inhibit nitrate reductase (NR). The results confirm that in maize roots tungstate inhibited NR activity. 15N-NMR in vivo experiments demonstrated the cessation of nitrogen flux from nitrate to organic compounds. Tungstate affected neither NO3- uptake nor the levels of the main phosphorylated compounds. Slight changes in cytoplasmic pH were observed during NO3- uptake and reduction (i.e. control). By contrast, in the presence of tungstate, a consistent decrease in cytoplasmic pH occurred. The vacuolar pH did not change in any of the conditions tested. These data show that NO3- uptake is an acidifying process and suggest a possible involvement of NO3- reduction in pH homeostasis. In the presence of NO3-, a transient depolarization of transmembrane electric potential difference (Em) was observed in all the conditions analysed. However, in tungstate-treated roots, a lesser depolarization accompanied by a greater ability to recover Em was found. This was related to a higher activity of the plasma membrane (PM) H+-ATPase. When NO3- was administered as potassium salt, its uptake increased and a greater depolarization of Em took place, whilst the changes in cytoplasmic pH were remarkably reduced, according to the central role played by K+ in the control of plasma membrane activities and cell pH homeostasis. A possible involvement of cytoplasmic pH in the control of PM H+-ATPase expression during nitrate exposure is suggested.  相似文献   

12.
Crossed immunoelectrophoresis was used to analyze the components of membrane vesicles of anaerobically grown Escherichia coli. The number of precipitation lines in the crossed immunoelectrophoresis patterns of membrane vesicles isolated from E. coli grown anaerobically on glucose plus nitrate and on glycerol plus fumarate were 83 and 70, respectively. Zymogram staining techniques were used to identify immunoprecipitates corresponding to nitrate reductase, formate dehydrogenase, fumarate reductase, and glycerol-3-phosphate dehydrogenase in crossed immunoelectrophoresis reference patterns. The identification of fumarate reductase by its succinate oxidizing activity was confirmed with purified enzyme and with mutants lacking or overproducing this enzyme. In addition, precipitation lines were found for hydrogenase, cytochrome oxidase, the membrane-bound ATPase, and the dehydrogenases for succinate, malate, dihydroorotate, D-lactate, 6-phosphogluconate, and NADH. Adsorption experiments with intact and solubilized membrane vesicles showed that fumarate reductase, hydrogenase, glycerol-3-phosphate dehydrogenase, nitrate reductase, and ATPase are located at the inner surface of the cytoplasmic membrane; on the other hand, the results suggest that formate dehydrogenase is a transmembrane protein.  相似文献   

13.
The enzyme transglutaminase has been used to label surface proteins of Escherichia coli cytoplasmic membranes by covalently attaching to them a small fluorescent primary amine, dansyl cadaverine. Spheroplasts lacking outer membrane, osmotically lysed vesicles from the spheroplasts, and vesicles made by breaking cells in a French pressure cell were each labeled with transglutaminase and dansyl cadaverine. When the total cytoplasmic membrane proteins of each were examined on sodium dodecyl sulfate gels, three rather different labeling patterns were obtained. Labeling of the respiratory enzyme, nitrate reductase, in the membranes of each of these preparations was also examined. Membrane-bound nitrate reductase contains three subunits: A, B, and C. Dansyl cadaverine labeling of nitrate reductase in the presence of Triton X-100 indicated that subunits A and C could be labeled. When nitrate reductase was isolated from dansyl cadaverine-labeled spheroplasts, none of the subunits was labeled. When nitrate reductase was isolated from French press vesicles, subunit A was labeled and labeling was enhanced by the presence of nitrate during labeling. When nitrate reductase from osmotic vesicles was examined, subunit A was labeled in the presence of nitrate but no labeled subunits appeared when the vesicles were labeled in the absence of nitrate. It was concluded that (i) nitrate reductase is buried in the membrane with subunit A exposed only on the inner surface of the membrane, (ii) subunit C is sufficiently buried within the membrane so that it is inaccessible to transglutaminase, (iii) subunit B is not labeled under any condition, so its location is not known, and (iv) large osmotic vesicles are probably mosaics in which some protein components have been reoriented.  相似文献   

14.
Wolinella succinogenes performs oxidative phosphorylation with fumarate instead of O2 as terminal electron acceptor and H2 or formate as electron donors. Fumarate reduction by these donors ('fumarate respiration') is catalyzed by an electron transport chain in the bacterial membrane, and is coupled to the generation of an electrochemical proton potential (Deltap) across the bacterial membrane. The experimental evidence concerning the electron transport and its coupling to Deltap generation is reviewed in this article. The electron transport chain consists of fumarate reductase, menaquinone (MK) and either hydrogenase or formate dehydrogenase. Measurements indicate that the Deltap is generated exclusively by MK reduction with H2 or formate; MKH2 oxidation by fumarate appears to be an electroneutral process. However, evidence derived from the crystal structure of fumarate reductase suggests an electrogenic mechanism for the latter process.  相似文献   

15.
The indirect immunoferritin labeling method was used to localize the membrane-bound respiratory nitrate reductase in membrane vesicles and protoplasts or spheroplasts of Bacillus licheniformis and Klebsiella aerogenes, respectively. For a comparison of the labeling of the various vesicle preparations, which differed not only in size but also in the percentage of inside-out orientation, a quantification of the results was needed to circumvent the problem of non-specifically bound ferritin. From the results the sidedness of the nitrate reductase in the cytoplasmic membrane of the abovementioned bacteria was determined as being cytoplasmic in B. licheniformis and as transmembranous in K. aerogenes.Non-Standard Abbreviations PBS phosphate buffered saline - IgG immunoglobulin G  相似文献   

16.
The effect of deleting the genes encoding the twin-arginine translocation (Tat) system on H2 production by Escherichia coli strain MC4100 and its formate hydrogenlyase upregulated mutant (DeltahycA) was investigated. H2 evolution tests using two mutant strains defective in Tat transport (DeltatatC and DeltatatA-E) showed that the rate doubled from 0.88+/-0.28 mL H2 mg dry weight-1 L culture-1 in the parental strain, to 1.70+/-0.15 and 1.75+/-0.18 mL H2 mg dry weight-1 L culture-1, respectively, in the DeltatatC and DeltatatA-E strains. This increase was comparable to that of a previously characterized hydrogen over-producing E. coli strain carrying a DeltahycA allele. Construction of a tatC, DeltahycA double deletion strain did not increase hydrogen production further. Inactivation of the Tat system prevents correct assembly of the uptake hydrogenases and formate dehydrogenases in the cytoplasmic membrane and it is postulated that the subsequent loss of basal levels of respiratory-linked hydrogen and formate oxidation accounts for the observed increases in formate-dependent hydrogen evolution.  相似文献   

17.
《The Biochemical journal》1975,148(2):329-333
The synthesis of nitrate reductase and its incorporation into the cytoplasmic membrane of Escherichia coli strain A1004a (5-aminolaevulinic acid auxotroph) does not require synthesis of cytochrome b. The synthesis of the apoprotein(s) of the cytochrome b of the respiratory pathway from NADH to nitrate appears to be inhibited by the absence of haem. No member of the respiratory pathway from NADH to oxygen is capable of reducing nitrate reductase directly. The site on nitrate reductase that oxidizes FMNH2 is located on the cytoplasmic aspect of the cytoplasmic membrane.  相似文献   

18.
基于液泡膜质子泵的硝态氮再利用研究进展   总被引:1,自引:0,他引:1  
全面掌握洛川果园的土壤水分环境特征,不仅可为苹果的园址选择、砧穗组合和改进土壤水分管理措施提供理论依据,而且对我国苹果产区果园提质增效具有借鉴价值.采用定点土壤水分连续监测法,对洛川苹果园的总体土壤水分环境以及不同生长年限、不同立地类型和乔、矮化果园的土壤水分分异特征进行分析.结果表明: 苹果树根际区 (0~200 cm)土壤水分普遍亏欠,且0~60 cm土层的水分亏欠小于60~200 cm土层;生长季0~60 cm土层贮水量与降水量的变化一致,土壤相对含水量大多<60%,季节性旱象严重;果园剖面土壤含水量变异系数随土壤深度加深而递减;随果园生长年限的增大,土壤剖面贮水量下降;在栽培密度一致的条件下,矮化果园5 m土层土壤含水量均高于乔化果园,而栽培密度大的矮化果园的土壤贮水量低于栽培密度小的乔化果园;塬地成龄果园的土壤水分含量最高,川地次之,台地相对较低.密度对果园土壤水分含量有很大影响,在栽培密度一致的条件下,采用矮化栽培能减少土壤水分消耗,显著提高果园土壤含水量;挖株降低栽培密度是维持苹果园土壤水分平衡、实现可持续发展的有效途径.  相似文献   

19.
Spheroplasts from aerobically grown wild-type Paracoccus denitrificans cells respire with succinate despite specific inhibition of the cytochrome bc1 complex by myxothiazol. Coupled to this activity, which involves only b-type cytochromes, there is translocation of 1.5-1.9 h+/e- across the cytoplasmic membrane. Similar H+ translocation ratios are observed during oxidation of ubiquinol in spheroplasts from aerobically grown mutants of Paracoccus lacking cytochrome c oxidase, or deficient in cytochrome c, as well as in a strain of E. coli from which cytochrome d was deleted. These observations show that the cytochrome o complex is a proton pump much like cytochrome aa3 to which it is structurally related.  相似文献   

20.
Proton translocation, coupled to formate oxidation and hydrogen evolution, was studied in anaerobically grown fermenting Escherichia coli JW136 carrying hydrogenase 1 (hya) and hydrogenase 2 (hyb) double deletions. Rapid acidification of the medium by EDTA-treated anaerobic suspension of the whole cells or its alkalization by inverted membranes was observed in response to application of formate. The formate-dependent proton translocation and 2H(+)-K(+) exchange coupled to H(2) evolution were sensitive to the uncoupler, carbonylcyanide-m-chlorophenylhydrazone, and to copper ions, inhibitors of hydrogenases. No pH changes were observed in a suspension of formate-pulsed aerobically grown ("respiring") cells. The apparent H(+)/formate ratio of 1.3 was obtained in cells oxidizing formate. The 2H(+)-K(+) exchange of the ATP synthase inhibitor N,N'-dicyclohexylcarbodiimide-sensitive ion fluxes does take place in JW136 cell suspension. Hydrogen formation from formate by cell suspensions of E. coli JW136 resulted in the formation of a membrane potential (Deltapsi) across the cytoplasmic membrane of -130 mV (inside negative). This was abolished in the presence of copper ions, although they had little effect on the value of Deltapsi generated by E. coli under respiration. We conclude that the hydrogen production by hydrogenase 3 is coupled to formate-dependent proton pumping that regulates 2H(+)-K(+) exchange in fermenting bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号