首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper we provide further evidence about the nature of a 77-kD starch synthase (SSII) that is both soluble and bound to the starch granules in developing pea (Pisum sativum L.) embryos. Mature SSII gives rise to starch synthase activity when expressed in a strain of Escherichia coli lacking glycogen synthase. In transgenic potatoes (Solanum tuberosum L.) expressing SSII, the protein is both soluble and bound to the starch granules. These results confirm that SSII is a starch synthase and indicate that partitioning between the soluble and granule-bound fraction of storage organs is an intrinsic property of the protein. A 60-kD isoform of starch synthase found both in the soluble and granule-bound fraction of the pea embryos is probably derived by the processing of SSII and is a different gene product from GBSSI, the exclusively granule-bound 59-kD isoform of starch synthase that is similar to starch synthases encoded by the waxy genes of cereals and the amf gene of potatoes. Consistent with this, expression in E. coli of an N-terminally truncated version of SSII gives rise to starch synthase activity.  相似文献   

2.
Antibodies were used to probe the degree of association of starch biosynthetic enzymes with starch granules isolated from maize (Zea mays) endosperm. Graded washings of the starch granule, followed by release of polypeptides by gelatinization in 2% sodium dodecyl sulfate, enables distinction between strongly and loosely adherent proteins. Mild aqueous washing of granules resulted in near-complete solubilization of ADP-glucose pyrophosphorylase, indicating that little, if any, ADP-glucose pyrophosphorylase is granule associated. In contrast, all of the waxy protein plus significant levels of starch synthase I and starch branching enzyme II (BEII) remained granule associated. Stringent washings using protease and detergent demonstrated that the waxy protein, more than 85% total endosperm starch synthase I protein, and more than 45% of BEII protein were strongly associated with starch granules. Rates of polypeptide accumulation within starch granules remained constant during endosperm development. Soluble and granule-derived forms of BEII yielded identical peptide maps and overlapping tryptic fragments closely aligned with deduced amino acid sequences from BEII cDNA clones. These observations provide direct evidence that BEII exits as both soluble and granule-associated entities. We conclude that each of the known starch biosynthetic enzymes in maize endosperm exhibits a differential propensity to associate with, or to become irreversibly entrapped within, the starch granule.  相似文献   

3.
Peng M  Gao M  Båga M  Hucl P  Chibbar RN 《Plant physiology》2000,124(1):265-272
Two starch granule-bound proteins (SGP), SGP-140 and SGP-145, were preferentially associated with A-type starch granules (>10 microm) in developing and mature wheat (Triticum aestivum) kernels. Immunoblotting and N-terminal sequencing suggested that the two proteins were different variants of SBEIc, a 152-kD isoform of wheat starch-branching enzyme. Both SGP-140 and SGP-145 were localized to the endosperm starch granules but were not found in the endosperm soluble fraction or pericarp starch granules younger than 15 d post anthesis (DPA). Small-size starch granules (<10 microm) initiated before 15 DPA incorporated SGP-140 and SGP-145 throughout endosperm development and grew into full-size A-type starch granules (>10 microm). In contrast, small-size starch granules harvested after 15 DPA contained only low amounts of SGP-140 and SGP-145 and developed mainly into B-type starch granules (<10 microm). Polypeptides of similar mass and immunologically related to SGP-140 and/or SGP-145 were also preferentially incorporated into A-type starch granules of barley (Hordeum vulgare), rye (Secale cereale), and triticale (x Triticosecale Wittmack) endosperm, which like wheat endosperm have a bimodal starch granule size distribution.  相似文献   

4.
The major isoform of starch synthase from the soluble fraction of developing potato tubers has been purified and used to prepare an antibody and isolate a cDNA. The protein is 140 kD, and it is distinctly different in predicted primary amino acid sequence from other isoforms of the enzyme thus far described. Immunoinhibition and immunoblotting experiments and analysis of tubers in which activity of the isoform was reduced through expression of antisense mRNA revealed that the isoform accounts for approximately 80% of the activity in the soluble fraction of the tuber and that it is also bound to starch granules. Severe reductions in activity had no discernible effect on starch content or amylose-to-amylopectin ratio of starch in tubers. However, they caused a profound change in the morphology of starch granules, indicative of important underlying changes in the structure of starch polymers within the granule.  相似文献   

5.
Identification of granule-bound starch synthase in potato tubers   总被引:11,自引:3,他引:8       下载免费PDF全文
Starch granules isolated from potato (Solanum tuberosum L.) tubers were extracted with sodium dodecyl sulfate and the extract was analyzed. A major protein with a molecular weight of 60,000 daltons was detected. This protein was purified by preparative sodium dodecyl sulfate-gel electrophoresis and specific antibodies were prepared. The anti-60-kilodalton antibodies obtained (a) cross-reacted with the waxy proteins of both maize (Zea mays L.) and grain amaranth (Amaranthus hypochondriacus L.), and (b) inhibited starch synthase activity in partially digested starch granules of the grain amaranth. This evidence strongly suggests that the major 60-kilodalton protein present in potato starch granules represents the granule-bound starch synthase.  相似文献   

6.
In addition to the exclusively granule-bound starch synthase GBSSI, starch granules also bind significant proportions of other starch biosynthetic enzymes, particularly starch synthases (SS) SSI and SSIIa, and starch branching enzyme (BE) BEIIb. Whether this association is a functional aspect of starch biosynthesis, or results from non-specific entrapment during amylopectin crystallization, is not known. This study utilized genetic, immunological, and proteomic approaches to investigate comprehensively the proteome and phosphoproteome of Zea mays endosperm starch granules. SSIII, BEI, BEIIa, and starch phosphorylase were identified as internal granule-associated proteins in maize endosperm, along with the previously identified proteins GBSS, SSI, SSIIa, and BEIIb. Genetic analyses revealed three instances in which granule association of one protein is affected by the absence of another biosynthetic enzyme. First, eliminating SSIIa caused reduced granule association of SSI and BEIIb, without affecting GBSS abundance. Second, eliminating SSIII caused the appearance of two distinct electrophoretic mobility forms of BEIIb, whereas only a single migration form of BEIIb was observed in wild type or any other mutant granules examined. Third, eliminating BEIIb caused significant increases in the abundance of BEI, BEIIa, SSIII, and starch phosphorylase in the granule, without affecting SSI or SSIIa. Analysis of the granule phosphoproteome with a phosphorylation-specific dye indicated that GBSS, BEIIb, and starch phosphorylase are all phosphorylated as they occur in the granule. These results suggest the possibility that starch metabolic enzymes located in granules are regulated by post-translational modification and/or protein-protein interactions.  相似文献   

7.
We have investigated the nature and locations of isoforms of starch synthase in the developing endosperm of wheat (Triticum aestivum L.). There are three distinct granule-bound isoforms of 60 kDa (the Waxy gene product), 77 kDa and 100–105 kDa. One of these isoforms, the 77-kDa protein, is also present in the soluble fraction of the endosperm but it contributes only a small proportion of the total soluble activity. Most of the soluble activity is contributed by isoforms which are apparently not also granule-bound. The 60-kDa and 77kDa isoforms of wheat are antigenically related to isoforms of very similar size in the developing pea embryo, but the other isoforms in the endosperm appear to have no counterparts in the pea embryo. The significance of these results in terms of the diversity of isoforms of starch synthase and their locations is discussed.Abbreviations DEAE diethylaminoethyl - GBSS granule-bound starch synthase - NT nullisomictetrasomic We are grateful to the late John Hawker (University of Adelaide, Australia) and to John Snape (John Innes Centre, UK) for useful discussions during the course of this work, to John Snape and Catherine Chinoy (John Innes Centre, UK) for the gift of the NT lines and to Richard Batt (University of Adelaide, Australia) for technical assistance.  相似文献   

8.
Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue of waxy wheat stained blue-black and contained amylose. Significantly higher starch synthase activity was detected in pericarp starch granules than in endosperm starch granules. A granule-bound protein that differed from GBSSI in molecular mass and isoelectric point was detected in the pericarp starch granules but not in granules from endosperm. This protein was designated GBSSII. The N-terminal amino acid sequence of GBSSII, although not identical to wheat GBSSI, showed strong homology to waxy proteins or GBSSIs of cereals and potato, and contained the motif KTGGL, which is the putative substrate-binding site of GBSSI of plants and of glycogen synthase of Escherichia coli. GBSSII cross-reacted specifically with antisera raised against potato and maize GBSSI. This study indicates that GBSSI and GBSSII are expressed in a tissue-specific manner in different organs, with GBSSII having an important function in amylose synthesis in the pericarp.  相似文献   

9.
Amylose-defective mutants were selected after UV mutagenesis of Chlamydomonas reinhardtii cells. Two recessive nuclear alleles of the ST-2 gene led to the disappearance not only of amylose but also of a fraction of the amylopectin. Granule-bound starch synthase activities were markedly reduced in strains carrying either st-2-1 or st-2-2, as is the case for amylose-deficient (waxy) endosperm mutants of higher plants. The main 76-kDa protein associated with the starch granule was either missing or greatly diminished in both mutants, while st-2-1-carrying strains displayed a novel 56-kDa major protein. Methylation and nuclear magnetic resonance analysis of wild-type algal storage polysaccharide revealed a structure identical to that of higher-plant starch, while amylose-defective mutants retained a modified amylopectin fraction. We thus propose that the waxy gene product conditions not only the synthesis of amylose from endosperm storage tissue in higher-plant amyloplasts but also that of amylose and a fraction of amylopectin in all starch-accumulating plastids. The nature of the ST-2 (waxy) gene product with respect to the granule-bound starch synthase activities is discussed.  相似文献   

10.
Progress in understanding the biosynthesis of amylose   总被引:19,自引:0,他引:19  
The storage of glucose in insoluble granules is a distinctive feature of plant cells. Biosynthesis of amylose, the minor low molecular mass fraction of starch occurs from ADP-glucose. This takes place within the polysaccharide matrix through the action of granule-bound starch synthase, the major protein associated with the granule. Recently, amylose has been successfully synthesized in vitro from purified granules. Two models have been proposed to explain the mechanism of amylose synthesis in plants. The first calls for priming of synthesis through small-size malto-oligosaccharides. The second suggests that glucans are extended by granule-bound starch synthase from a high molecular mass primer present within the granule. This extension is terminated through cleavage to produce amylose. This process is subsequently repeated to give several rounds of amylose synthesis.  相似文献   

11.
In higher plants several isoforms of starch synthase contribute to the extension of glucan chains in the synthesis of starch. Different isoforms are responsible for the synthesis of essentially linear amylose chains and branched, amylopectin chains. The activity of granule-bound starch synthase I from potato has been compared with that of starch synthase II from potato following expression of both isoforms in Escherichia coli. Significant differences in their activities are apparent which may be important in determining their specificities in vivo. These differences include affinities for ADPglucose and glucan substrates, activation by amylopectin, response to citrate, thermosensitivity and the processivity of glucan chain extension. To define regions of the isoforms determining these characteristic traits, chimeric proteins have been produced by expression in E. coli. These experiments reveal that the C-terminal region of granule-bound starch synthase I confers most of the specific properties of this isoform, except its processive elongation of glucan chains. This region of granule-bound starch synthase I is distinct from the C-terminal region of other starch synthases. The specific properties it confers may be important in defining the specificity of granule-bound starch synthase I in producing amylose in vivo.  相似文献   

12.
A starch granule protein, SGP-1, is a starch synthase bound to starch granules in wheat endosperm. A wheat lacking SGP-1 was produced by crossing three variants each deficient in one of three SGP-1 classes, namely SGP-A1, -B1 or -D1. This deficient wheat (SGP–1 null wheat) showed some alterations in endosperm starch, meaning that SGP-1 is involved in starch synthesis. Electrophoretic experiments revealed that the levels of two starch granule proteins, SGP-2 and -3, decreased considerably in the SGP-1 null wheat though that of the waxy protein (granule-bound starch syn- thase I) did not. The A-type starch granules were deformed. Apparent high amylose level (30.8–37.4%) was indicated by colorimetric measurement, amperometric titration, and the concanavalin A method. The altered structure of amylopectin was detected by both high- performance size-exclusion chromatography and high-performance anion exchange chromatography. Levels of amylopectin chains with degrees of polymerization (DP) 6–10 increased, while DP 11–25 chains decreased. A low starch crystallinity was shown by both X-ray diffraction and differential scanning calorimetry (DSC) analyses because major peaks were absent. Abnormal crystallinity was also suggested by the lack of a polarized cross in SGP-1 null starch. The above results suggest that SGP-1 is responsible for amylopectin synthesis. Since the SGP-1 null wheat produced novel starch which has not been described before, it can be used to expand variation in wheat starch. Received: 30 April 1999 / Accepted: 9 November 1999  相似文献   

13.
We have isolated cDNA clones to two isoforms of granule-bound starch synthase (GBSS) from pea embryos and potato tubers. The sequences of both isoforms are related to that of glycogen synthase from E. coli and one, GBSSI, is very similar to the waxy protein of maize and other species. In pea, GBSSII carries a novel 203-amino-acid domain at its N-terminus. Genes encoding both proteins are expressed during pea embryo development, but GBSSII is most highly expressed earlier in development than GBSSI. Similarly, GBSSI and GBSSII are differentially expressed in developing potato tubers. Expression of both isoforms is much lower in other organs of pea than in embryos. GBSSII is expressed in every organ tested while GBSSI is not expressed in roots, stipules or flowers. The possible consequences of this differential use of GBSS isoforms are discussed.  相似文献   

14.
In the developing endosperm of monocotyledonous plants, starch granules are synthesized and deposited within the amyloplast. A soluble stromal fraction was isolated from amyloplasts of immature maize (Zea mays L.) endosperm and analyzed for enzyme activities and polypeptide content. Specific activities of starch synthase and starch-branching enzyme (SBE), but not the cytosolic marker alcohol dehydrogenase, were strongly enhanced in soluble amyloplast stromal fractions relative to soluble extracts obtained from homogenized kernels or endosperms. Immunoblot analysis demonstrated that starch synthase I, SBEIIb, and sugary1, the putative starch-debranching enzyme, were each highly enriched in the amyloplast stroma, providing direct evidence for the localization of starch-biosynthetic enzymes within this compartment. Analysis of maize mutants shows the deficiency of the 85-kD SBEIIb polypeptide in the stroma of amylose extender cultivars and that the dull mutant lacks a >220-kD stromal polypeptide. The stromal fraction is distinguished by differential enrichment of a characteristic group of previously undocumented polypeptides. N-terminal sequence analysis revealed that an abundant 81-kD stromal polypeptide is a member of the Hsp70 family of stress-related proteins. Moreover, the 81-kD stromal polypeptide is strongly recognized by antibodies specific for an Hsp70 of the chloroplast stroma. These findings are discussed in light of implications for the correct folding and assembly of soluble, partially soluble, and granule-bound starch-biosynthetic enzymes during import into the amyloplast.  相似文献   

15.
Reductions in activity of SSIII, the major isoform of starch synthase responsible for amylopectin synthesis in the potato tuber, result in fissuring of the starch granules. To discover the causes of the fissuring, and thus to shed light on factors that influence starch granule morphology in general, SSIII antisense lines were compared with lines with reductions in the major granule-bound isoform of starch synthase (GBSS) and lines with reductions in activity of both SSIII and GBSS (SSIII/GBSS antisense lines). This revealed that fissuring resulted from the activity of GBSS in the SSIII antisense background. Control (untransformed) lines and GBSS and SSIII/GBSS antisense lines had unfissured granules. Starch analyses showed that granules from SSIII antisense tubers had a greater number of long glucan chains than did granules from the other lines, in the form of larger amylose molecules and a unique fraction of very long amylopectin chains. These are likely to result from increased flux through GBSS in SSIII antisense tubers, in response to the elevated content of ADP-glucose in these tubers. It is proposed that the long glucan chains disrupt organization of the semi-crystalline parts of the matrix, setting up stresses in the matrix that lead to fissuring.  相似文献   

16.
Amylose extender (ae(-)) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae(-) maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein-protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae(-) mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272-Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16-20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-(32)P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the granules is a result of physical association with other enzymes of starch synthesis. In addition, an Mn(2+)-based affinity ligand, specific for phosphoproteins, was used to show that the granule-bound forms of SBEIIb in the wild-type and ae1.2 were phosphorylated, as was the granule-bound form of SBEI found in ae1.2 starch. The data strongly support the hypothesis that the complement of heteromeric complexes of proteins involved in amylopectin synthesis contributes to the fine structure and architecture of the starch granule.  相似文献   

17.
Three forms of soluble starch synthase were resolved by anion-exchange chromatography of soluble extracts from immature rice (Oryza sativa L.) seeds, and each of these forms was further purified by affinity chromatograph. The 55-, 57-, and 57-kD proteins in the three preparations were identified as candidates for soluble starch synthase by western blot analysis using an antiserum against rice granule-bound starch synthase. It is interesting that the amino-terminal amino acid sequence was identical among the three proteins, except that the 55-kD protein lacked eight amino acids at the amino terminus. Thus, these three proteins are products of the same gene. The cDNA clones coding for this protein have been isolated from an immature rice seed library in lambda gt11 using synthetic oligonucleotides as probes. The deduced amino acid sequence of this protein contains a lysine-X-glycine-glycine consensus sequence for the ADP-glucose-binding site of starch and glycogen synthases. Therefore, we conclude that this protein corresponds to a form of soluble starch synthase in immature rice seeds. The precursor of the enzyme contains 626 amino acids, including a 113-residue transit peptide at the amino terminus. The mature form of soluble starch synthase shares a significant but low sequence identity with rice granule-bound starch synthase and Escherichia coli glycogen synthase. However, several regions, including the substrate-binding site, are highly conserved among these three enzymes. Blot hybridization analysis demonstrates that the gene encoding soluble starch synthase is a single-copy gene in the rice genome and is expressed in both leaves and immature seeds. These results suggest that soluble and granule-bound starch synthases play distinct roles in starch biosynthesis of plant.  相似文献   

18.
Triticale(× Triticosecale Wittmack) grains synthesize and accumulate starch as their main energy source.Starch accumulation rate and synthesis activities of ADP-glucose pyrophosphorylase,soluble starch synthases,granule-bound starch synthase and starch-branching enzyme showed similar pattern of unimodal curves during endosperm development.There was no significant difference in activity of the starch granule-bound protein isolated from total and separated starch granules at different developmental stages after anthesis in triticale.Evans Blue staining and analysis of DNA fragmentation indicated that cells of triticale endosperm undergo programmed cell death during its development.Dead cells within the endosperm were detected at 6 d post anthesis(DPA),and evidence of DNA fragmentation was first observed at 21 DPA.The period between initial detection of PCD to its rapid increase overlapped with the key stages of rapid starch accumulation during endosperm development.Cell death occurred stochastically throughout the whole endosperm,meanwhile,the activities of starch biosynthetic enzymes and the starch accumulation rate decreased in the late stages of grain filling.These results suggested that the timing and progression of PCD in triticale endosperm may interfere with starch synthesis and accumulation.  相似文献   

19.
Triticale (x Triticosecale Wittmack) grains synthesize and accumulate starch as their main energy source.Starch accumulation rate and synthesis activities of ADP-glucose pyrophosphorylase, soluble starch synthases, granule-bound starch synthase and starch-branching enzyme showed similar pattern of unimodal curves during endosperm development. There was no significant difference in activity of the starch granule-bound protein isolated from total and separated starch granules at different developmental stages after anthesis in triticale. Evans Blue staining and analysis of DNA fragmentation indicated that cells of triticale endosperm undergo programmed cell death during its development. Dead cells within the endosperm were detected at 6 d post anthesis (DPA), and evidence of DNA fragmentation was first observed at 21 DPA. The period between initial detection of PCD to its rapid increase overlapped with the key stages of rapid starch accumulation during endosperm development. Cell death occurred stochastically throughout the whole endosperm, meanwhile, the activities of starch biosynthetic enzymes and the starch accumulation rate decreased in the late stages of grain filling. These results suggested that the timing and progression of PCD in triticale endosperm may interfere with starch synthesis and accumulation.  相似文献   

20.
Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix.It has long been known that starch granules contain bound polypeptides, with protein levels of isolated starch granules from maize (Zea mays) ranging from 0.3 to 1.0% based upon measurement of N2 (May, 1987). A recent study by our laboratory demonstrates that isolated starch granules from maize contain several dozen strongly bound polypeptides (Mu-Forster et al., 1996). The granule-associated proteins include starch-biosynthetic enzymes such as the waxy protein, SSI, and SBEIIb. These polypeptides are not removed from intact starch granules by protease treatment or detergent washing; therefore, they are believed to bind to the starch and to become irreversibly entrapped within the starch matrix.Based upon staining intensities of polypeptides extracted from the starch granule (Mu-Forster et al., 1996), approximately one-half of the granule-associated proteins in maize consist of low-molecular-mass polypeptides ranging between 10 and 27 kD. These bands fall within the size range displayed by the zein storage proteins, however, the spatial distribution of these polypeptides within the starch granule is unknown. Zeins have been defined as alcohol-soluble proteins that occur principally in protein bodies of maize endosperm and that may or may not require reduction before extraction (Wilson, 1991). The association of zeins with starch granules during endosperm development would not be expected because zein genes do not contain transit peptides that would target these proteins through the amyloplast envelope into the amyloplast stroma.The objective of this study was to establish the topology of granule-associated zeins in starch granules from maize endosperm. To accomplish this, it was necessary to distinguish between surface-localized and internalized polypeptides. Our working hypothesis defines polypeptides localized at the starch granule surface as those that are susceptible to hydrolysis upon treatment of intact granules with exogenous proteases. Conversely, internal granule proteins are defined as those that (a) become susceptible to proteolysis only following thermal disruption of the starch matrix, and (b) resist extraction by 2% SDS at room temperatures (Denyer et al., 1993; Rahman et al., 1995; Mu-Forster et al., 1996).In this study we were able to distinguish between surface-localized and internalized granule-associated polypeptides in starch granules from maize endosperm by use of the thermophilic protease thermolysin. Thermolysin is well suited for this purpose because it is highly active at starch-gelatinization temperatures, and has also been shown to effectively hydrolyze hydrophobic proteins located at the surfaces of chloroplasts and other subcellular organelles (Cline et al., 1984; Xu and Chitnis, 1995). Upon extended incubation of intact starch granules with thermolysin at subgelatinization temperatures, we found that zeins were selectively removed from the starch granule surface. All other granule-associated polypeptides remained inaccessible to proteolytic attack or to extraction by 2% SDS, unless the starch matrix was first disrupted by gelatinization. Our results distinguish between the surface-localized and granule-intrinsic proteins of maize endosperm, and establish that zeins are localized at the starch-granule surface. In addition, cross-linking experiments were conducted to determine nearest-neighbor relationships among zein subunits localized at the granule surface and granule intrinsic polypeptides localized within the starch matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号