首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Treatment of human promyelocytic leukemia cells U937 with phorbol 12-myristate 13-acetate (TPA) induces them to differentiate into monocytic cells [Harris, P., & Ralph, P. (1985) J. Leukocyte Biol. 37, 407-422]. Here we investigated the effects of TPA on interleukin 1 gene expression and the possible role of protein kinase C (PKC) in this process. Addition of TPA to serum-starved U937 cells induced the expression of the interleukin 1 beta (IL-1 beta) gene. This effect was apparent as early as 2 h and peaked at 24 h in the presence of 5 X 10(-8) M TPA. Higher concentrations of TPA, which partially or totally depleted protein kinase C levels in the cells (10(-9)-2 X 10(-5) M), had an inhibitory effect on IL-1 beta mRNA expression. Cell-permeable 1,2-dioctanoyl-sn-glycerol (diC8), a diacylglycerol that activates PKC in intact cells and cell-free systems, did not mimic the effect of TPA on the IL-1 beta mRNA induction. To determine the protein kinase C isozymes present in the control and TPA- (5 X 10(-8) M) treated U937 cells, we prepared antipeptide antibodies that specifically recognize the alpha, beta, and gamma isoforms of protein kinase C in rat brain cytosol and U937 cell extracts. In "control" U937 cells, 30% of PKC alpha was particulate, and PKC beta was cytosolic, while there was no detectable PKC gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Ding SZ  Cho CH  Lam SK 《Cytokine》2000,12(7):1129-1135
Interleukin (IL-) 6 is closely related to gastrointestinal diseases. The question of whether gastric epithelial cell contributes to IL-6 production remains undefined. We aim to evaluate the regulatory pathway of IL-6 expression in gastric epithelial cells, by using different inflammatory cytokines, endotoxin, or protein kinase modulators. IL-6 was measured by ELISA. Phorbol-12-myristate-13-acetate (PMA), calcium ionophore A23187, TNF-alpha, IL-1beta, oncostatin M (OSM) but not lipopolysaccharide stimulated IL-6 production from gastric epithelial cell line MKN-28. Blocking protein tyrosine kinase (PTK) activation by herbimycin A or genistein, or blocking NF-kappaB activation by pyrrolidinedithiocarbamate, reduced the IL-6 expression induced by TNF-alpha, IL-1beta and OSM. Dexamethasone mimicked this effect. Protein kinase (PK) C inhibitor only reduced the PMA and OSM induced IL-6 production. Both inhibitors and activators for PKA and G-protein as well as IL-10 had no effects on IL-6 expression. These results indicate that inflammatory cytokines are crucial for IL-6 regulation in gastric epithelial cells. The IL-6 signal pathway is mediated through PTK, NF-kappaB, and also involve PKC, intracellular calcium and sensitive to dexamethasone, but is not related to PKA, G-protein and IL-10.  相似文献   

4.
GM-CSF has a major role in the immune and inflammatory milieu of the airway. Airway epithelial cells (AEC) are among the first targets of environmental stimuli and local cytokines, in response to which they can produce GM-CSF. The regulation of GM-CSF is only minimally understood in AEC. We hypothesized that GM-CSF expression in AEC would result from activation of protein kinase C (PKC) and subsequent activation of the extracellular signal-regulated kinase (MAPKerk1/2) pathway, so we investigated signal transduction pathways in human primary culture bronchial epithelial cells (HBECs). TNF-alpha, IL-1beta, and PMA induced the release of GM-CSF in HBECs. The robust response to PMA was not detected in SV40 adenovirus-transformed normal human bronchial epithelial cells (BEAS-2B). PMA and TNF-alpha stimulation of GM-CSF required activation of PKC (inhibition by staurosporine and bisindolylmaleimide I). GM-CSF expression was up-regulated by a nonphorbol PKC activator, but not by an inactive PMA analogue. PMA-induced GM-CSF production in HBECs did not require a Ca2+ ionophore and was not inhibited by cyclosporin A. Activation of MAPKerk1/2 via PKC was associated with and was required for GM-CSF production induced by PMA and TNF-alpha. The data demonstrate regulation of GM-CSF in HBECs by PKC pathways converging on the MAPKerk1/2 pathway and further define cell-specific regulation critical for local airway responses.  相似文献   

5.
EL 4-6.1 cells, variants of the murine EL4 thymoma cell line, can be activated by interleukin 1 (IL-1) or phorbol 12-myristate-13-acetate (PMA), or PMA+IL-1 to secrete interleukin 2 (IL-2) and interleukin 4 (IL-4) and to express the IL-2 receptor (IL-2R). To compare the different activation pathways, we examined the effects of staurosporine (STAR) and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), two protein kinase C (PKC) inhibitors, on the induction of interleukin secretion and IL-2R expression in these cells. We report here that nanomolar concentrations of STAR strongly potentiated (20- to 30-fold) the production of IL-2 or IL-4, when EL 4-6.1 cells were induced by IL-1 alpha (or IL-1 beta) alone. By contrast, at identical concentrations, STAR dose-dependently inhibited the production of IL-2 and IL-4 resulting from PMA or PMA+IL-1 cell treatment. STAR also negatively affected the expression of IL-2R, which was dependent on PMA-sensitive PKC with either IL-1, PMA, or PMA+IL-1 stimulation. The changes in interleukin production and IL-2R expression in EL 4-6.1 activated cells were correlated with changes at the mRNA level measured by quantitative polymerase chain reaction (PCR). This finding suggests a pretranslational effect of the drug. At micromolar concentrations, H7 showed the same effects as STAR, but only increased IL-1-triggered interleukin secretions twofold. We observed that the action of PKC inhibitors did not result from modification of IL-1 receptor (IL-1R) expression in EL 4-6.1 cells. Thus, our data show that PKC inhibitors clearly distinguish between IL-1 and PMA stimulatory pathways. In addition, they suggest that the IL-1 stimulatory pathway involves PKC(s) [or other undefined kinase(s)] which regulate this pathway and differ from PKC(s) activated by PMA.  相似文献   

6.
TNF-alpha and IL-1 were reported to be the most powerful inducers of IL-8 in a multitude of cells, including leukocytes. In this study, we investigated TNF-alpha- and IL-1-mediated regulation of IL-8 gene expression in non-fractionated PBMC, and purified monocyte (MO) and lymphocyte (LY) fractions. Our analysis revealed that purified human MO did not respond to exogenous TNF-alpha with the induction of IL-8 mRNA or protein, nor require endogenous TNF-alpha for IL-8 expression. In contrast, in the presence of exogenous IL-1alpha and IL-1beta a substantial enhancement of IL-8 mRNA and protein expression in MO was observed. Nevertheless, antibodies to IL-1alpha and IL-1beta were unable to downregulate the expression of IL-8 in resting adherent or Staphylococcus aureus Cowan 1 (SAC)-stimulated MO. In contrast with MO, purified LY and non-fractionated PBMC expressed IL-8 in response to exogenous TNF-alpha, similar to exogenous IL-1alpha and IL-1beta. As was seen with MO, antibodies to TNF-alpha, IL-1alpha and IL-1beta did not inhibit the expression of IL-8 in purified LY and non-fractionated PBMC stimulated with SAC and LPS. Taken together, our data demonstrate major differences in responsiveness of MO and LY to exogenous TNF-alpha and IL-1, and suggest relative autonomy of IL-8 gene expression in these cells that does not require accessory cytokines but can be induced directly by exogenous stimuli.  相似文献   

7.
Syndecans are constitutively shed from growing epithelial cells as the part of normal cell surface turnover. However, increased serum levels of the soluble syndecan ectodomain have been reported to occur during bacterial infections. The aim of this study was to evaluate the potential of lipopolysaccharide (LPS) from the periodontopathogen Porphyromonas gingivalis to induce the shedding of syndecan-1 expressed by human gingival epithelial cells. We showed that the syndecan-1 ectodomain is constitutively shed from the cell surface of human gingival epithelial cells. This constitutive shedding corresponding to the basal level of soluble syndecan-1 ectodomain was significantly increased when cells were stimulated with P. gingivalis LPS and reached a level comparable to that caused by phorbol myristic acid (PMA), an activator of protein kinase C (PKC) which is well known as a shedding agonist. The syndecan-1 shedding was paralleled by pro-inflammatory cytokine interleukin-1 beta (IL-1beta), IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) release. Indeed, secretion of IL-1beta and TNF-alpha increased following stimulation by P. gingivalis LPS and PMA, respectively. When recombinant forms of these proteins were added to the cell culture, they induced a concentration-dependent increase in syndecan-1 ectodomain shedding. A treatment with IL-1beta converting enzyme (ICE) specific inhibitor prevented IL-1beta secretion by epithelial cells stimulated by P. gingivalis LPS and decreased the levels of shed syndecan-1 ectodomain. We also observed that PMA and TNF-alpha stimulated matrix metalloproteinase-9 secretion, whereas IL-1beta and P. gingivalis LPS did not. Our results demonstrated that P. gingivalis LPS stimulated syndecan-1 shedding, a phenomenon that may be mediated in part by IL-1beta, leading to an activation of intracellular signaling pathways different from those involved in PMA stimulation.  相似文献   

8.
Pulmonary arteries exhibit a marked vasoconstriction when exposed to hypoxic conditions. Although this may be an adaptive response to match lung ventilation with perfusion, the potential consequences of sustained pulmonary vasoconstriction include pulmonary hypertension and right heart failure. Concomitant production of proinflammatory mediators during hypoxia may exacerbate acute increases in pulmonary vascular resistance. We hypothesized that acute hypoxia causes pulmonary arterial contraction and increases the pulmonary artery tissue expression of proinflammatory cytokines via a protein kinase C (PKC)-mediated mechanism. To study this, isometric force displacement was measured in isolated rat pulmonary artery rings during hypoxia in the presence and absence of the PKC inhibitors calphostin C or chelerythrine. In separate experiments, pulmonary artery rings were treated with the PKC activator thymeleatoxin for 60 min. After hypoxia, with or without PKC inhibition, or PKC activation alone, pulmonary artery rings were subjected to mRNA analysis for TNF-alpha and IL-1beta via RT-PCR. Our results showed that, in isolated pulmonary arteries, hypoxia caused a biphasic contraction and increased expression of TNF-alpha and IL-1beta mRNA. Both effects were inhibited by PKC inhibition. PKC activation resulted in pulmonary artery contraction and increased the pulmonary artery expression of TNF-alpha and IL-1beta mRNA. These findings suggest that hypoxia induces the expression of inflammatory cytokines and causes vasoconstriction via a PKC-dependent mechanism. We conclude that PKC may have a central role in modulating hypoxic pulmonary vasoconstriction, and further elucidation of its involvement may lead to therapeutic application.  相似文献   

9.
Actinobacillus actinomycetemcomitans is implicated in the pathogenesis of localized aggressive periodontitis, and has the capacity to express a cytolethal distending toxin (Cdt). Gingival fibroblasts (GF) are resident cells of the periodontium, which can express several osteolytic cytokines. The aims of this study were a) to investigate the role of Cdt in A. actinomycetemcomitans-induced expression of osteolytic cytokines and their cognate receptors in GF and b) to determine if the previously demonstrated induction of receptor activator of NFkappaB ligand (RANKL) by A. actinomycetemcomitans is mediated by these pro-inflammatory cytokines or by prostaglandin E(2) (PGE(2)). A. actinomycetemcomitans clearly induced interleukin (IL)-6, IL-1beta, and to a minimal extent, tumor necrosis factor (TNF)-alpha mRNA expression. At the protein level, IL-6 but not IL-1beta or TNF-alpha expression was stimulated. The mRNA expression of the different receptor subtypes recognizing IL-6, IL-1beta and TNF-alpha was not affected. A cdt-knockout strain of A. actinomycetemcomitans had similar effects on cytokine and cytokine receptor mRNA expression, compared to its parental wild-type strain. Purified Cdt stimulated IL-6, but not IL-1beta or TNF-alpha protein biosynthesis. Antibodies neutralizing IL-6, IL-1 or TNF-alpha, and the PGE(2) synthesis inhibitor indomethacin, did not affect A. actinomycetemcomitans-induced RANKL expression. In conclusion, a) A. actinomycetemcomitans induces IL-6 production in GF by a mechanism largely independent of its Cdt and b) A. actinomycetemcomitans-induced RANKL expression in GF occurs independently of IL-1, IL-6, TNF-alpha, or PGE(2).  相似文献   

10.
Phorbol-12-myristate- 13-acetate (PMA) has been shown to induce hypertrophy of cardiac myocytes. The prostaglandin endoperoxide H synthase isoform 2 (cyclooxygenase-2, COX-2) has been associated with enhanced growth and/or proliferation of several types of cells. Thus we studied whether PMA induces COX-2 and prostanoid products PGE(2) and PGF(2alpha) in neonatal ventricular myocytes and whether endogenous COX-2 products participate in their growth. In addition, we examined whether PMA affects interleukin-1beta (IL-1beta) stimulation of COX-2 and PGE(2) production. PMA (0.1 micromol/l) stimulated growth, as indicated by a 1.6-fold increase in [(3)H]leucine incorporation. PMA increased COX-2 protein levels 2. 8-fold, PGE(2) 3.7-fold, and PGF(2alpha) 2.9-fold. Inhibition of either p38 kinase or protein kinase C (PKC) prevented PMA-stimulated COX-2. Inhibition of COX-2 with either indomethacin or NS-398 had no effect on PMA-stimulated [(3)H]leucine incorporation. Exogenous administration of PGF(2alpha), but not PGE(2), stimulated protein synthesis. Treatment with IL-1beta (5 ng/ml) increased COX-2 protein levels 42-fold, whereas cotreatment with IL-1beta and PMA stimulated COX-2 protein only 32-fold. IL-1beta did not affect control or PMA-stimulated protein synthesis. These findings indicate that: 1) PMA, acting through PKC and p38 kinase, enhances COX-2 expression, but chronic treatment with PMA partially inhibits IL-1beta stimulation of COX-2; and 2) exogenous PGF(2alpha) is involved in neonatal ventricular myocyte growth but endogenous COX-2 products are not.  相似文献   

11.
12.
Interleukin-1beta regulates CFTR expression in human intestinal T84 cells   总被引:3,自引:0,他引:3  
Cystic fibrosis is an autosomal recessive genetic disease, produced by a mutation in the CFTR gene that impairs its function as a chloride channel. In this work, we have examined the effects of interleukin-1beta (IL-1beta) on the expression of CFTR in human colonic T84 cells. Treatment of T84 cells with IL-1beta (0.25 ng/ml) for 4 h resulted in an increased CFTR expression (mRNA and protein). However, higher doses of IL-1beta (1 ng/ml and over) produced inhibition of CFTR mRNA and protein expression. The protein kinase C (PKC) inhibitors H7 (50 microM) and GF109203X (1 microM) inhibited the stimulatory effect of IL-1beta. Similar effects were seen in the presence of the protein tyrosine kinase (PTK) inhibitors genistein (60 microM) and herbymicin A (2 microM). These results suggest that some PKC isoform(s) and at least a PTK might be involved in the CFTR up-regulation induced by IL-1beta. The repression of CFTR up-regulation by cycloheximide (35.5 microM) suggests the participation of a de novo synthesized protein. Results obtained by using the RNA polymerase II inhibitor DRB (78 microM), suggest that the increased mRNA levels seen after IL-1beta treatment are not due to an increased stability of the message. We conclude that the CFTR mRNA and protein levels are modulated by IL-1beta, this cytokine being the first extracellular protein known to up-regulate CFTR gene expression.  相似文献   

13.
14.
GM-CSF production by RPE cells, which form part of the blood-retina barrier, is upregulated by IL-1beta and this increase can be reversed by IFN-gamma. IL-1beta up-regulation is not dependent on PKC but the PKC activator PMA induces low levels of GM-CSF production and acts synergistically with IL-1beta to further increase GM-CSF. Although A23187 and ionomycin stimulated low levels of GM-CSF production, the IL-1beta pathway was cyclosporin A insensitive and did not interact with the calcium pathway. IL-1beta-stimulated GM-CSF mRNA expression and production was strongly dependent on NF-kappaB. IFN-gamma inhibition of the GM-CSF response to IL-1beta acted via NF-kappaB, reducing the translocation of NF-kappaB to the nuclei of RPE cells treated with IL-1beta and IFN-gamma. The results show that IFN-gamma down-regulation acts either directly on NF-kappaB or its activation or by blockade of a pathway upstream of NF-kappaB. However, any such blockade does not involve PKC or intracellular calcium.  相似文献   

15.
16.
Hepatocyte growth factor (HGF) is one of the vital factors for liver regeneration. HGF production is induced by the activation of protein kinase A and protein kinase C-mediated pathways, interleukin (IL)-1, tumor necrosis factor (TNF)-alpha, and epidermal growth factor (EGF) in mesenchymal cells. We here report that IL-1 and TNF-alpha, hitherto regarded as HGF inducers, potently inhibited HGF production stimulated by other HGF inducers. IL-1alpha, IL-1beta, and TNF-alpha alone had minimal stimulating effects on HGF production in human dermal fibroblasts, but they strongly inhibited production of HGF induced by cholera toxin, 8-bromo-cAMP, EGF, and phorbol 12-myristate 13-acetate (PMA). Moreover, although the high level of HGF production in MRC-5 cells was enhanced by PMA and less markedly by IL-1beta, HGF production in MRC-5 cells treated with PMA plus IL-1beta was less than that in the cells treated with PMA alone. In the presence of interferon (IFN)-gamma, however, cholera toxin- and 8-bromo-cAMP-induced HGF production was not inhibited by IL-1beta. Pretreatment of cells with IL-1beta suppressed the phosphorylation of cAMP-responsive element-binding protein induced by cholera toxin but not that induced by 8-bromo-cAMP. Taken together, our results indicate that IL-1 inhibited HGF production stimulated by various inducers, including protein kinase A-activating agents, and that IFN-gamma overcame this inhibition of induction of HGF production.  相似文献   

17.
Intracellular signals that mediate differentiation of pluripotent hemopoietic progenitors to dendritic cells (DC) are largely undefined. We have previously shown that protein kinase C (PKC) activation (with phorbol ester (PMA) alone) specifically induces differentiation of primary human CD34+ hemopoietic progenitor cells (HPC) to mature DC. We now find that cytokine-driven (granulocyte-macrophage CSF and TNF-alpha) CD34+ HPC-->DC differentiation is preferentially blocked by inhibitors of PKC activation. To further identify intracellular signals and downstream events important in CD34+ HPC-->DC differentiation we have characterized a human leukemic cell line model of this process. The CD34+ myelomonocytic cell line KG1 differentiates into dendritic-like cells in response to granulocyte-macrophage CSF plus TNF-alpha, or PMA (with or without the calcium ionophore ionomycin, or TNF-alpha), with different stimuli mediating different aspects of the process. Phenotypic DC characteristics of KG1 dendritic-like cells include morphology (loosely adherent cells with long neurite processes), MHC I+/MHC IIbright/CD83+/CD86+/CD14- surface Ag expression, and RelB and DC-CK1 gene expression. Functional DC characteristics include fluid phase macromolecule uptake (FITC-dextran) and activation of resting T cells. Comparison of KG1 to the PMA-unresponsive subline KG1a reveals differences in expression of TNF receptors 1 and 2; PKC isoforms alpha, beta I, beta II, and mu; and RelB, suggesting that these components/pathways are important for DC differentiation. Together, these findings demonstrate that cytokine or phorbol ester stimulation of KG1 is a model of human CD34+ HPC to DC differentiation and suggest that specific intracellular signaling pathways mediate specific events in DC lineage commitment.  相似文献   

18.
AIMS: To determine whether granulocyte macrophage-colony stimulating factor (GM-CSF) production by neuronal precursor (NT2) cells can be regulated by IL-1beta and TNF-alpha. BACKGROUND: We have previously demonstrated GM-CSF expression by neurons of the developing human brain, as well as by NT2 cells. IL-1beta and TNF-alpha upregulate GM-CSF production in glial cells, but GM-CSF regulation in neurons is as yet undefined. We hypothesized that IL-1beta and TNF-alpha would increase GM-CSF mRNA and protein production in NT2 cells. METHODS: The effect of IL-1beta and TNF-alpha on GM-CSF production was assessed by dose response (0 to 2,000 U/ml), and time course (0 to 48 hours incubation) experiments. GM-CSF mRNA and protein production were assessed by quantitative RT-PCR and by ELISA. The effect of these cytokines on cell turnover was determined by BrdU incorporation. RESULTS: IL-1beta increased GM-CSF mRNA and protein expression by NT2 cells. This effect was time and dose dependent, and the effective dose ranging from (20-200 U/ml). TNF-alpha increased GM-CSF mRNA expression to a lesser extent than did IL-1beta (maximal stimulation at 200 U/ml), and a minimal increase in net protein accumulation was noted. Neither cytokine increased NT2 cell turnover. CONCLUSIONS: IL-1beta and TNF-alpha both increase GM-CSF mRNA expression by NT2 cells, but only IL-1beta increases net GM-CSF protein accumulation.  相似文献   

19.
20.
We have investigated gene and protein expression of ST2/ST2L in a murine alveolar macrophage (AM) cell line, MH-S, reacting to inflammatory stimuli in vitro and in the lung tissue of an acute lung injury model in vivo. We have also analyzed the effect of soluble ST2 protein on inflammatory response of MH-S cells. Lipopolysaccharide (LPS) and proinflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha induced ST2 mRNA expression in MH-S cells. In an acute lung injury model, protein and mRNA expression levels of ST2 increased to the maximal level at 24-72h after the LPS challenge. Furthermore, pretreatment with ST2 protein significantly reduced the protein production and gene expression of IL-1alpha, IL-6, and TNF-alpha in LPS-stimulated MH-S cells in vitro. These results suggest that increases in endogenous ST2 protein in AM, which is induced by inflammatory stimuli, such as LPS and proinflammatory cytokines, may modulate acute lung inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号