首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucocorticoids may induce osteopenia in experimental animals and in man. In order to study the possible effects of vitamin D metabolites in the prevention of glucocorticoid-induced osteopenia in rats, we administered 1 alpha(OH)-vitamin D3, 24,25(OH)2-vitamin D3 or a combination of both metabolites, by intragastric intubation, to rats treated daily by intramuscular injections of 10 mg/kg cortisone acetate. Treatment with the vitamin D metabolites started after 1 month of glucocorticoid therapy, at the time osteopenia was already present. Cortisone acetate decreased the gain weight, increased alkaline phosphatase (AP) and decreased Ca serum levels. It also decreased tibial wet and ash weight and tibial Ca content. Computerized histomorphometry of sections from the upper tibia showed decreased epiphyseal bone volume and increased bone marrow volume; decreased height of hypertrophic cartilage in the growth plate and decreased amount of persisting cartilage in the metaphyseal bone trabeculae were also observed. Administration of 24,25(OH)2D3 alone did not reduce these glucocorticoid-induced bone changes and sometimes even worsened them. 1 alpha(OH)D3 reversed many of the deleterious effects of cortisone acetate. It reduced serum AP levels, increased serum Ca levels, increased bone ash weight, epiphyseal and metaphyseal bone volume, with a concomitant reduction in epiphyseal and metaphyseal bone marrow volume. The best results were obtained by a combination of 1 alpha(OH)D3 and 24,25(OH)2D3. It is presumed that both metabolites are needed to reduce the impact of glucocorticoids on bone. 1 alpha(OH)2D3 acts on the gut, increasing Ca absorption (which was decreased by glucocorticoids), and 24,25(OH)2D3 directly acts on bone to enhance bone formation and mineralization.  相似文献   

2.
S100A2 protein, a Ca2+ binding protein, was investigated by immunocytochemistry in the epiphyseal cartilage and bone cells of growing rats, and in primary cultures of osteoblasts. S100A2 was detected in the chondrocytes and in the extracellular cartilage matrix. In the later however, its presence only in the calcifying areas of the epiphyseal cartilage suggests that it could be involved in the process of calcification of cartilage.  相似文献   

3.
Cytochrome oxidase activity was studied in articular and epiphyseal cartilage, in bone tissue and in callus. Changes in the activity of the enzyme were observed after ischaemic condition. Activity was the highest in the epiphyseal cartilage while in the other structures it decreased in the order of articular cartilage, chondroid tissue, newly formed woven bone, connective tissue cells, immature, preexisting lamellar bone tissue. It is assumed that differences in enzyme activity are due to differences in metabolic rate. The higher the activity of a structure in the intact state, the more marked was its decrease upon ischaemia. This implies that cells of higher metabolic rate are more sensitive to ischaemia.  相似文献   

4.
《Bone and mineral》1994,24(1):43-58
This study examined the effects of estrogen (17β-estradiol) and testosterone on the growth of long bones in male and female mice, with and without gonadectomy. Weight and nose-to-tail length were determined at 3 weeks of age at time of gonadectomy, 7 days later at the onset of hormone therapy, and throughout the treatment period. Gonadectomized mice exhibited an initial weight gain during the pretreatment period but length was unaffected. Hormone treatment altered weight gain in surgical and intact animals in a gender- and hormone-dependent manner. Estradiol enhanced weight gain in intact mice, but inhibited weight gain in ovariectomized mice. Lower doses of estradiol increased weight gain in orchiectomized mice at early time points. Testosterone increased weight in intact females and males, but not in gonadectomized mice. Estradiol increased nose-to-tail length in intact females at early time points, but inhibited length in ovariectomized females at later times, and it decreased length in intact males. Testosterone increased length in normal females and normal males. Serum Ca was unaffected by ovariectomy, but orchiectomy resulted in decreased levels. Estradiol reduced serum Ca in gonadectomized animals; serum Ca was increased by estradiol treatment in intact females. Changes in tibial bone weight, ash weight and mineral composition, and relative sizes of epiphyseal and metaphyseal bone were gender-, gonadectomy- and hormone-specific. Bone weight was greater in ovariectomized mice. Ash weight per bone was comparable, but there was an increase in Ca and P content with ovariectomy. Estradiol increased bone weight, ash content, and bone Ca and P in ovariectomized and intact females. Orchiectomy alone did not alter bone weight, ash content, or Ca and P, but orchiectomized mice were sensitive to estradiol; all parameters were increased in the orchiectomized animals treated with estradiol. Analysis of the ash content and Ca and P per mg bone, rather than per bone, demonstrated estradiol and testosterone alter net bone formation, but not the amount of mineral per unit bone. Ovariectomy increased hypertrophic cartilage. While estradiol did not alter tibial area in ovariectomized mice, it caused an increase in intact females. The total amount of growth plate cartilage in ovariectomized animals was decreased by estradiol to levels typical of intact animals due to a greater decrease in the hypertrophic cartilage in the ovariectomized mice, as well as a greater increase in metaphyseal bone area. Testosterone had no effect on these parameters in the females. Orchiectomy decreased the amount of growth plate cartilage, but increased the hypertrophic zone. Estradiol increased growth plate cartilage in intact male mice, but decreased it in orchiectomized mice. This difference was also seen in the hypertrophic zone. Total growth plate cartilage and hypertrophic cartilage were increased by testosterone in intact males, whereas metaphyseal and epiphyseal bone area were decreased. The results show for the first time that there is a gender-specific response in both male and female mice to both estradiol and testosterone, whether or not the animals have been gonadectomized. For many parameters, orchiectomized mice behave like females in response to both sex steroids, indicating that the male gonad is needed for mouse bone to exhibit the male phenotypic response to estradiol and testosterone.  相似文献   

5.
Abnormalities of the epiphyseal growth plate that occur in collagen-induced arthritis (CIA) were studied. CIA was induced in 6-week-old Lewis rats by immunization with type II collagen. Radiographic examination revealed the early closure of the epiphyseal growth plate with growth retardation of the femur and tibia. Histological evaluation confirmed the early closure of the epiphyseal growth plate accompanied by decreased intensity of safranin-O staining indicating decreased amounts of proteoglycans in the extracellular matrix (ECM) of the cartilage. Immunohistochemical methods showed that the number of chondrocytes expressing matrix metalloproteinase (MMP)-3 and/or vascular endothelial growth factor (VEGF) increased in the growth plates of CIA rats. This study confirmed that disturbances of long bone growth with early closure of the epiphyseal growth plates occur in CIA. There appeared to be overexpression of MMP-3, which may be involved with proteoglycan degradation. Additionally, VEGF, which is associated with cartilage ossification and angiogenesis, might also play a role in this event. Further clarification of the mechanism of the growth disturbance in CIA may yield clinical benefits, especially in prevention of the premature closure of growth plate that is seen in juvenile rheumatoid arthritis and other diseases.  相似文献   

6.
This study has used in situ hybridization, Northern blot analysis, and immunohistochemistry at the light and electron microscope levels to localize mRNAs and core proteins of biglycan in developing tibial epiphyseal cartilage of 10-day old Wistar rats. The expression of mRNAs and core proteins of biglycan appeared prominent in hypertrophic and degenerative chondrocytes associated with the epiphyseal ossification centre and the growth plate cartilage, but was not seen in the rest of epiphyseal cartilage. Northern blot analysis confirmed biglycan mRNA expression in the epiphyseal cartilage. Ultrastructural immunogold cytochemistry of the growth plate revealed that prominent immunolabelling was confined to the Golgi apparatus and cisternae of rough-surfaced endoplasmic reticulum of the hypertrophic and the degenerating chondrocytes, the early mineralized cartilage matrices of the longitudinal septum of the lower hypertrophic and the calcifying zones, and fully mineralized cartilage matrices, which were present in the metaphyseal bone trabeculae. Furthermore, Western blot analysis of biglycan in extracts of fresh epiphyseal cartilage revealed that an EDTA extract, after chondroitinase ABC digestion, contains core proteins of biglycan, indicating the presence of biglycan in mineralized cartilage matrices. These results indicate that the distribution of biglycan is associated with cartilage matrix mineralization.  相似文献   

7.
The structure of the epiphyseal cartilage of the bullfrog Rana catesbeiana and its role in the growth of long bones were examined. The epiphyseal cartilage was inserted into the end of a tubular bone shaft, defining three regions: articular cartilage, lateral articular cartilage and growth cartilage. Joining the lateral cartilage to the bone was a fibrous layer of periosteum, rich in blood vessels. Osteoblasts with alkaline phosphatase activity were found on the surface of the periosteal bone, which presented a fibrous non-mineralised tip. The growth cartilage was inside the bone. The proliferative chondrocytes presented perpendicular separation of daughter cells and there was no columnar arrangement of the cells. Furthermore, chondrocyte hypertrophy was not associated with either calcification or endochondral ossification, in apparent contrast to the avian and mammalian models. Finally, there was no reinforcement system capable of directing cell volume increase into longitudinal growth. Since bone extension depends on the intramembranous ossification of the periosteum, the growth cartilage is inside and not at the end of the bone and the cells in the growth cartilage show no columnar arrangement and separate in a direction perpendicular to the long bone axis, we conclude that the growth cartilage mainly contributes to the radial expansion of the bone.  相似文献   

8.
The ultrastructural localization of alkaline phosphatase (A1P) activity has been demonstrated in epiphyseal growth cartilage and metaphyseal bone of rats. Epiphyso-metaphyseal specimens were decalcified with EDTA and treated with MgCl2 to regenerate the enzymatic activity before incubation in a medium containing beta-glycerophosphate, MgCl2 and CeCl3. A1P activity was present on the outer surface of the plasmamembrane of maturing and hypertrophic chondrocytes and of osteoblasts. Moreover, the reaction product was present in chondrocyte lacunae, in matrix vesicles, and in cartilage matrix, as well as among uncalcified collagen fibrils of osteoid tissue in bone. The intensity of reaction was the lowest, or completely lacking, where the degree of matrix calcification was the highest. These results suggest that alkaline phosphatase is transported from the cells into the cartilage and bone matrix by its association with matrix vesicles and plasmamembrane components, and that its activity in cartilage and bone matrix is inhibited as it is incorporated in the mineral substance.  相似文献   

9.
Isolated syngeneic epiphyseal chondrocytes transplanted into a muscle formed cartilage in which matrix resorption and endochondral ossification began at the end of the second week after transplantation. After 56 days cartilage was converted into an ossicle. In 7-day-old intrarenal transplants, epiphyseal chondrocytes formed nodules of cartilage. In 10-day-old transplants, islands of bone appeared. Slight resorption of cartilage was first noted in 14-day-old transplants of chondrocytes. After eight weeks, transplants contained mainly bone. Intramuscularly transplanted rib chondrocytes formed cartilage which did not ossify. Nevertheless, bone islands appeared in intrarenal transplants of rib chondrocytes. Bone was not formed in allogeneic intrarenal transplants of epiphyseal or rib chondrocytes, but appeared in such transplants in animals immunosuppressed by anti-thymocyte serum and procarbazine. When spleen cells from animals immunized with allogeneic chondrocytes were transferred to immunosuppressed chondrocyte recipients two weeks after intrarenal chondrocyte transplantation, the majority of osteocytes in bone islands was dead. On the other hand, endochondral bone formed in intramuscular transplants of allogenic epiphyseal chondrocytes in immunosuppressed recipients was not damaged by sensitized spleen cells. This suggested that bone in 10- to 14-day-old intrarenal transplants of chondrocytes arose from injected cells and not by induction. To see whether bone was formed by chondrocytes or by some cells contaminating the chondrocyte suspension, the superficial layer of rib cartilage was removed by collagenase digestion and only more central chondrocytes were used for transplantation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The aim of this work was to prepare specific antibodies against skin and bone collagen (type I) and cartilage collagen (type II) for the study of differential collagen synthesis during development of the chick embryo by immunofluorescence. Antibodies against native type I collagen from chick cranial bone, and native pepsin-extracted type II collagen from chick sternal cartilage were raised in rabbits, rats, and guinea pigs. The antibodies, purified by cross-absorption on the heterologous collagen type, followed by absorption and elution from the homologous collagen type, were specific according to passive hemagglutination tests and indirect immunofluorescence staining of chick bone and cartilage tissues. Antibodies specific to type I collagen labeled bone trabeculae from tibia and perichondrium from sternal cartilage. Antibodies specific to type II collagen stained chondrocytes of sternal and epiphyseal cartilage, whereas fluorescence with intercellular cartilage collagen was obtained only after treatment with hyaluronidase. Applying type II collagen antibodies to sections of chick embryos, the earliest cartilage collagen found was in the notochord, at stage 15, followed by vertebral collagen secreted by sclerotome cells adjacent to the notochord from stage 25 onwards. Type I collagen was found in the dermatomal myotomal plate and presumptive dermis at stage 17, in limb mesenchyme at stage 24, and in the perichondrium of tibiae at stage 31.  相似文献   

11.
The effects of stress due to brief (4--5 min) ether and pentobarbital anesthesia vs. decapitation on assays of seven enzymes in homogenates of synovium, articular and epiphyseal cartilage, and metaphyseal and cortical bone were compared. Etherization caused twofold changes in synovial and articular cartilage G-6-PDH, LDH, CPK, glutamic DH, and ICDH based on tissue dry weight and DNA content. Pentobarbital anesthesia produced only slightly lower activities, per gram DNA, of LDH, acid phosphatase, and glutamic-DH in cortical bone. Epiphyseal cartilage metabolism was unaffected by either mode of anesthesia. No difference could be detected between levels of enzyme activities of the several tissues taken from rats that had been decapitated or anesthetized with pentobarbital. The changes in enzyme activities suggested that pentobarbital was non-stressful and appropriate to metabolic studies in the skeleton.  相似文献   

12.
Long-Evans rats were exposed to a single dose of head X-irradiation (600 rads) at 2 days of age. Experimental and sham irradiated rats were sacrificed at 14, 20-21, 23, 41-45, and 70-71 days. Tibial epiphyseal width and the number of cells in the epiphyseal plate were determined. Histochemical and electron microscopic studies were carried out on both costal and epiphyseal cartilage. Histochemical techniques revealed a reduction in chondroitin sulfate at 14 days in both costal and epiphyseal cartilage of X-irradiated rats. Epiphyseal cartilage demonstrated recovery subsequently, and this was followed by a normal decrease of chondroitin sulfate with increasing age, but costal cartilage did not recover. Collagen synthesis was also reduced in both costal and epiphyseal cartilage, but not as dramatically as chondroitin sulfate. Except for some electron dense cells and reduced scalloping of the cell membrane, costal chondrocytes from irradiated rats did not show major ultrastructural alterations. In contrast, epiphyseal chondrocytes demonstrated radiation induced alterations in organelles, in enhanced glycogen deposition, and in retardation of chondrocyte maturation. Extracellularly in both costal and epiphyseal cartilage of irradiated rats, collagen density and matrix granules were reduced, while calcification of the matrix was enhanced. Beyond 45 days, the effects of irradiation were markedly reduced. Comparisons of the histochemical results with metabolic studies carried out previously in cartilage from the same animals indicated a more direct concordance of the histochemical results with the pattern of physical growth and supported the usefulness of morphologic and histochemical techniques in the analysis of the growth disorder in the head-irradiated rat.  相似文献   

13.
Summary Observations with the light and electron microscope on the epiphyseal plate of rickety rats demonstrate several differences between the uncalcified cartilage and bone matrix. Uncalcified cartilage matrix is less refractile than bone matrix when it is viewed in polarized light. Electron microscopy shows that the fibrils of epiphyseal cartilage matrix are delicate and do not reveal the regular asymmetrical periodic structure that is so characteristic of collagen. The uncalcified bone matrix consists of fibrils with the regular fine structure of collagen. No unusual features could be found in the periodic banding of the collagen fibrils of the rickety osteoid, but some variations in their diameter and array were observed.This work was supported by research grant A 706 C-3, United States Public Health Service, National Institutes of Health (Arthritis and Metabolic Diseases).Markle Scholar in Medical Science, Electron Microscope Laboratory, Department of Pathology, Pathological Institute, McGill University Faculty of Medicine, Montreal, Canada.  相似文献   

14.
Recent studies in this laboratory have suggested that proteoglycan may function as a Ca ion-exchanger in the calcification of epiphyseal growth plate cartilage. Specifically, it has been proposed that phosphate liberated from hypertrophic chondrocytes may displace calcium ions bound to the anionic groups of proteoglycans, thereby raising the Ca x PO4 activity product above the threshold for precipitation of hydroxyapatite. In order to determine whether this mechanism is quantitatively feasible, a mathematical model of the interaction between Ca, Na, proteoglycan and phosphate has now been developed. This model is based on a general binding theory, and utilizes previously-determined values for the binding constants of the Ca-proteoglycan interaction, inhibition constants for the effect of Na and phosphate on this interaction, and literature values for the concentrations of proteoglycan, Na and Ca in epiphyseal cartilage. Using this approach, it was predicted that the free Ca concentration in epiphyseal cartilage in the absence of phosphate will be 1.55 mM. At 0.7 mM phosphate, the approximate concentration in non-calcified cartilage matrix, the free Ca concentration will be 2.40 mM, corresponding to a Ca x PO4 product of 1.68 (mM)2. In order to achieve a Ca x PO4 product sufficient for spontaneous precipitation of hydroxyapatite [approximately 4.3 (mM)2], a phosphate concentration of approximately 1.40 mM is required. Therefore, calcification of epiphyseal cartilage matrix by the mechanism described above will require an approximate doubling of the phosphate concentration in the pre-calcifying zones, indicating that the release of a fraction of the intracellular phosphate could trigger the calcification process.  相似文献   

15.
To examine the question of whether 24-hydroxylation plays and importance role in the physiological functions of vitamin D, the biological activity of 24,24-difluoro-25-hydroxyvitamin D was compared with that of 25-hydroxyvitamin D in vitamin D-deficient rats. These two compounds were found almost identically active in the stimulation of intestinal calcium transport, the mobilization of calcium from bone, the healing of rachitic epiphyseal plate cartilage, the elevation of serum inorganic phosphorus, the mineralization of rachitic bone, and in the prevention of rachitogenesis in rats. Little or no difference was detected in the time course of response of intestinal calcium transport or bone calcium mobilization to the two forms of vitamin D. Therefore, in the rat no support could be obtained for the idea that 24,25-dihydroxyvitamin D3 plays an important role in the known physiological responses to the vitamin.  相似文献   

16.
Summary Epiphyseal plate cartilage, epiphyseal cartilage, synchondroseal cartilage and mandibular condylar cartilage were studied morphologically and histochemically in 14 days old rats. Ordinary decalcified paraffin sections were stained with hematoxylin & eosin, van Giesons connective tissue stain, or toluidine blue, and used for morphological studies of the different cartilaginous structures. Undecalcified cryostat sections were used for demonstration of acid and alkaline phosphatase. The enzyme activity was tested for at regular intervals during incubation from 15 sec to 120 min.The morphologic study revealed that a marked similarity of construction exists between epiphyseal plate cartilage and synchrondroseal cartilage. The construction of epiphyseal and condylar cartilage differ from that of the other two structures and also differ mutually.With small variations the reaction for both alkaline and acid phosphatase was found to be identical in the zones of erosion, hypertrophy and maturation of the four structures. Intercellularly, acid phosphatase is present in all zones in the synchondroseal and the epiphyseal plate cartilage, while in the epiphyseal and condylar cartilages it is only present in the zones of erosion, hypertrophy and maturation.The identical reaction for acid phosphatase in the epiphyseal and the condylar cartilage is thought, in all likelihood, to be accidental. When kinetic conditions are taken into account, epiphyseal cartilage seems to react like epiphyseal plate and synchondroseal cartilage, while the condylar cartilage takes up an exceptional position among growth cartilages.  相似文献   

17.
 The protooncogene protein, Bcl-2, protects cells from apoptosis and ensures their survival in vitro by inhibiting the action of the apoptosis-inducer, Bax. Its expression in proliferative and long-lived cells in vivo also indicates that it protects against cell death. The chondrocytes of the epiphyseal plate cartilage undergo a series of maturation steps and deposit mineral in the cartilage matrix before dying. The possibility that Bcl-2 helps protect chondrocytes until mineral deposition is completed was investigated by determining the distribution of Bcl-2 immunoreactivity in the epiphyseal plate cartilage of growing rats and its subcellular localization, using a specific antibody. The involvement of Bax in the triggering of chondrocyte death was checked by immunocytochemistry. Bcl-2 expression in the osteoblasts and the final result of their evolution, the osteocytes, was also examined in trabecular bone. Bcl-2 immunoreactivity was non-uniformly distributed throughout the epiphyseal cartilage. It was maximal in proliferative chondrocytes, decreased in mature chondrocytes, and low in hypertrophic chondrocytes, whereas there was Bax immunoreactivity in all chondrocytes examined. Immunolabeling was intense in osteoblasts but considerably lower in fully differentiated osteocytes. Bcl-2 immunoreactivity was mainly in the cytoplasm of chondrocytes, osteoblasts, and early osteocytes; the nuclei appeared clear. The subcellular distribution of Bcl-2 immunolabeling in chondrocytes, revealed by gold particles in the electron microscope, showed that gold particles were frequently concentrated in the mitochondria in all the cartilage zones and lay mainly within the organelles, not at their periphery. The endoplasmic reticulum contained moderate immunoreactivity and there were few gold particles in the cytoplasm and nuclei. The number of gold particles decreased in all the subcellular compartments from proliferative to hypertrophic chondrocytes. In contrast, Bax immunoreactivity changed little during chondrocyte terminal evolution, and its subcellular distribution mirrored that of Bcl-2. These immunocytochemical data indicate that Bcl-2 helps maintain chondrocytes and osteoblasts until their terminal maturation. Accepted: 19 February 1997  相似文献   

18.
Osteochondrosis is a generalized skeletal disorder that affects the growth cartilage in the growing domestic pig but not in the minipig of wild hog ancestry. In the present study, we compare the ultrastructure of the articular and epiphyseal growth cartilage in the domestic pig with that in the minipig. The domestic pigs had areas of enlarged epiphyseal cartilage with chondronecrosis, which had caused focal impairment of the endochondral ossification, with retention of cartilage in the subchondral bone. Areas of chondronecrosis close to blood vessels were found in the resting zone, with no evidence of thickened cartilage or impaired ossification. The chondronecrosis was surrounded by chondrocytes, organized in small clusters, containing many lipid droplets. The vascular channels adjacent to the chondronecrosis contained degenerated blood vessels. The minipigs showed no areas of enlarged epiphyseal cartilage. A few dead chondrocytes could be seen close to vascular channels which contained morphologically normal blood vessels. We conclude that restricted perivascular chondrolysis may occur in the pig without the presence of vascular degeneration and without progressing to osteochondrosis.  相似文献   

19.
Summary Chondrocytes were isolated from rat epiphyseal cartilage, cultured in vitro, and exposed to exogenous tracers which accumulated in their lysosomes. The cells were then injected into the posterior tibial muscle of animals from the same outbred strain, where they reconstructed calcifying hyaline cartilage. The mineralization of the tissue was followed by ingrowth of blood capillaries from the host bed. Macrophage-like cells surrounding the vessels phagocytized degenerated chondrocytes and unmineralized matrix, whereas multinucleated chondroclasts removed some of the mineralized cartilage matrix. Mesenchyme-like cells accompanying the invading vessels attached to the remaining septa of calcified cartilage matrix and developed into osteoblasts depositing bone matrix on the surface of these septa. The apparent lack of inherent tracer labeling of the lysosomes in the different bone cells indicate that they were derived from the host. No signs of transformation of chondrocytes into bone cells were observed.When isolated rat epiphyseal chondrocytes were injected into the wall of the hamster cheek pouch, calcifying cartilage was reconstructed without signs of subsequent ossification. Transplantation of cartilage reconstructed in the hamster into the dorsal muscles of rats was, however, followed by formation of bone by a sequence analogous to that described above. Such an osteogenetic response was also obtained when the cartilage had been devitalized before transplantation.These experiments show that calcified cartilage, developing in or grafted into an intramuscular site, is able to induce and serve as a substrate for endochondral bone formation, similar to that occurring during normal development. They further indicate that bone induction by calcified cartilage does not require the presence of living chondrocytes.Financial support was obtained from the Swedish Medical Research Council (proj. no. 03355), the King Gustaf V 80th Birthday Fund, and from the funds of Karolinska Institutet. The authors thank Karin Blomgren for technical assistance and Inger Lohmander-Åhrén and Eva Pettersson for secretarial helpOn leave from the Department of Histology and Embryology, Medical Academy, Warsaw, Poland  相似文献   

20.
Morphological, histochemical and ultrastructural investigations on epiphyseal apparatus of Rana Esculenta were made. The most important findings were the following: 1) metaphyseal cartilage is localized inside proximal diaphyseal compact bone as a plug; 2) metaphyseal cartilage do not reduce in thickness during ageing; 3) metaphyseal cartilage do not show vascular invasion and do not mineralize in degenerative zone; 4) trabecular bone was not at all evident in this animal; 5) external periosteum is well vascularized and proliferates in correspondence to marginal epiphyseal end of the diaphyseal. From these results the hypothesis that the ranid frog bone growth is not due to metaphyseal metabolism (as in avian and mammals) but to bone periosteal marginal mineralization is reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号