首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although influenza infection alone may lead to pneumonia, secondary bacterial infections are a much more common cause of pneumonia. Streptococcus pneumoniae is the most frequently isolated causative pathogen during postinfluenza pneumonia. Considering that S. pneumoniae utilizes the platelet-activating factor receptor (PAFR) to invade the respiratory epithelium and that the PAFR is upregulated during viral infection, we here used PAFR gene-deficient (PAFR-/-) mice to determine the role of this receptor during postinfluenza pneumococcal pneumonia. Viral clearance was similar in wild-type and PAFR-/- mice, and influenza virus was completely removed from the lungs at the time mice were inoculated with S. pneumoniae (day 14 after influenza infection). PAFR-/- mice displayed a significantly reduced bacterial outgrowth in their lungs, a diminished dissemination of the infection, and a prolonged survival. Pulmonary levels of IL-10 and KC were significantly lower in PAFR-/- mice, whereas IL-6 and TNF-alpha were only trendwise lower. These data indicate that the pneumococcus uses the PAFR leading to severe pneumonia in a host previously exposed to influenza A.  相似文献   

2.
Secondary pneumococcal pneumonia is a serious complication during and shortly after influenza infection. We established a mouse model to study postinfluenza pneumococcal pneumonia and evaluated the role of IL-10 in host defense against Streptococcus pneumoniae after recovery from influenza infection. C57BL/6 mice were intranasally inoculated with 10 median tissue culture infective doses of influenza A (A/PR/8/34) or PBS (control) on day 0. By day 14 mice had regained their normal body weight and had cleared influenza virus from the lungs, as determined by real-time quantitative PCR. On day 14 after viral infection, mice received 10(4) CFU of S. pneumoniae (serotype 3) intranasally. Mice recovered from influenza infection were highly susceptible to subsequent pneumococcal pneumonia, as reflected by a 100% lethality on day 3 after bacterial infection, whereas control mice showed 17% lethality on day 3 and 83% lethality on day 6 after pneumococcal infection. Furthermore, 1000-fold higher bacterial counts at 48 h after infection with S. pneumoniae and, particularly, 50-fold higher pulmonary levels of IL-10 were observed in influenza-recovered mice than in control mice. Treatment with an anti-IL-10 mAb 1 h before bacterial inoculation resulted in reduced bacterial outgrowth and markedly reduced lethality during secondary bacterial pneumonia compared with those in IgG1 control mice. In conclusion, mild self-limiting influenza A infection renders normal immunocompetent mice highly susceptible to pneumococcal pneumonia. This increased susceptibility to secondary bacterial pneumonia is at least in part caused by excessive IL-10 production and reduced neutrophil function in the lungs.  相似文献   

3.
We investigated the synergism between influenza virus and Streptococcus pneumoniae, particularly the role of deletions in the stalk region of the neuraminidase (NA) of H2N2 and H9N2 avian influenza viruses. Deletions in the NA stalk (ΔNA) had no effect on NA activity or on the adherence of S. pneumoniae to virus-infected human alveolar epithelial (A549) and mouse lung adenoma (LA-4) cells, although it delayed virus elution from turkey red blood cells. Sequential S. pneumoniae infection of mice previously inoculated with isogenic recombinant H2N2 and H9N2 influenza viruses displayed severe pneumonia, elevated levels of intrapulmonary proinflammatory responses, and death. No differences between the WT and ΔNA mutant viruses were detected with respect to effects on postinfluenza pneumococcal pneumonia as measured by bacterial growth, lung inflammation, morbidity, mortality, and cytokine/chemokine concentrations. Differences were observed, however, in influenza virus-infected mice that were treated with oseltamivir prior to a challenge with S. pneumoniae. Under these circumstances, mice infected with ΔNA viruses were associated with a better prognosis following a secondary bacterial challenge. These data suggest that the H2N2 and H9N2 subtypes of avian influenza A viruses can contribute to secondary bacterial pneumonia and deletions in the NA stalk may modulate its outcome in the context of antiviral therapy.  相似文献   

4.
Interleukin-1 receptor like 1 (ST2) is a negative regulator of Toll-like receptor (TLR) signaling. TLRs are important for host defense during respiratory tract infections by both influenza and Streptococcus (S.) pneumoniae. Enhanced susceptibility to pneumococcal pneumonia is an important complication following influenza virus infection. We here sought to determine the role of ST2 in primary influenza A infection and secondary pneumococcal pneumonia. ST2 knockout (st2 −/−) and wild-type (WT) mice were intranasally infected with influenza A virus; in some experiments mice were infected 2 weeks later with S. pneumoniae. Both mouse strains cleared the virus similarly during the first 14 days of influenza infection and had recovered their weights equally at day 14. Overall st2−/− mice tended to have a stronger pulmonary inflammatory response upon infection with influenza; especially 14 days after infection modest but statistically significant elevations were seen in lung IL-6, IL-1β, KC, IL-10, and IL-33 concentrations and myeloperoxidase levels, indicative of enhanced neutrophil activity. Interestingly, bacterial lung loads were higher in st2−/− mice during the later stages of secondary pneumococcal pneumonia, which was associated with relatively increased lung IFN-γ levels. ST2 deficiency did not impact on gross lung pathology in either influenza or secondary S. pneumoniae pneumonia. These data show that ST2 plays a limited anti-inflammatory role during both primary influenza and postinfluenza pneumococcal pneumonia.  相似文献   

5.
Staphylococcus aureus is a significant cause of hospital and community acquired pneumonia and causes secondary infection after influenza A. Recently, patients with hyper-IgE syndrome, who often present with S. aureus infections of the lung and skin, were found to have mutations in STAT3, required for Th17 immunity, suggesting a potential critical role for Th17 cells in S. aureus pneumonia. Indeed, IL-17R(-/-) and IL-22(-/-) mice displayed impaired bacterial clearance of S. aureus compared with that of wild-type mice. Mice challenged with influenza A PR/8/34 H1N1 and subsequently with S. aureus had increased inflammation and decreased clearance of both virus and bacteria. Coinfection resulted in greater type I and II IFN production in the lung compared with that with virus infection alone. Importantly, influenza A coinfection resulted in substantially decreased IL-17, IL-22, and IL-23 production after S. aureus infection. The decrease in S. aureus-induced IL-17, IL-22, and IL-23 was independent of type II IFN but required type I IFN production in influenza A-infected mice. Furthermore, overexpression of IL-23 in influenza A, S. aureus-coinfected mice rescued the induction of IL-17 and IL-22 and markedly improved bacterial clearance. These data indicate a novel mechanism by which influenza A-induced type I IFNs inhibit Th17 immunity and increase susceptibility to secondary bacterial pneumonia.  相似文献   

6.
The influenza A virus protein PB1-F2 has been linked to the pathogenesis of both primary viral and secondary bacterial infections. H3N2 viruses have historically expressed full-length PB1-F2 proteins with either proinflammatory (e.g., from influenza A/Hong Kong/1/1968 virus) or noninflammatory (e.g., from influenza A/Wuhan/359/1995 virus) properties. Using synthetic peptides derived from the active C-terminal portion of the PB1-F2 protein from those two viruses, we mapped the proinflammatory domain to amino acid residues L62, R75, R79, and L82 and then determined the role of that domain in H3N2 influenza virus pathogenicity. PB1-F2-derived peptides containing that proinflammatory motif caused significant morbidity, mortality, and pulmonary inflammation in mice, manifesting as increased acute lung injury and the presence of proinflammatory cytokines and inflammatory cells in the lungs compared to peptides lacking this motif, and better supported bacterial infection with Streptococcus pneumoniae. Infections of mice with an otherwise isogenic virus engineered to contain this proinflammatory sequence in PB1-F2 demonstrated increased morbidity resulting from primary viral infections and enhanced development of secondary bacterial pneumonia. The presence of the PB1-F2 noninflammatory (P62, H75, Q79, and S82) sequence in the wild-type virus mediated an antibacterial effect. These data suggest that loss of the inflammatory PB1-F2 phenotype that supports bacterial superinfection during adaptation of H3N2 viruses to humans, coupled with acquisition of antibacterial activity, contributes to the relatively diminished frequency of severe infections seen with seasonal H3N2 influenza viruses in recent decades compared to their first 2 decades of circulation.  相似文献   

7.

Background

Patients with influenza virus infection can develop severe pneumonia and acute respiratory distress syndrome (ARDS) which have a high mortality. Influenza virus infection is treated worldwide mainly by neuraminidase inhibitors (NAIs). However, monotherapy with NAIs is insufficient for severe pneumonia secondary to influenza virus infection. We previously demonstrated that mice infected with a lethal dose of influenza virus develop diffuse alveolar damage (DAD) with alveolar collapse similar to that seen in ARDS in humans. Additionally, pulmonary surfactant proteins were gradually increased in mouse serum, suggesting a decrease in pulmonary surfactant in the lung. Therefore, the present study examined whether combination therapy of NAI with exogenous artificial surfactant affects mortality of influenza virus-infected mice.

Methodology/Principal Findings

BALB/c mice were inoculated with several viral doses of influenza A/Puerto Rico/8/34 (PR8) virus (H1N1). The mice were additionally administered exogenous artificial surfactant in the presence or absence of a new NAI, laninamivir octanoate. Mouse survival, body weight and general condition were observed for up to 20 days after inoculation. Viral titer and cytokine/chemokine levels in the lungs, lung weight, pathological analysis, and blood O2 and CO2 pressures were evaluated. Infected mice treated with combination therapy of laninamivir octanoate with artificial surfactant showed a significantly higher survival rate compared with those that received laninamivir octanoate monotherapy (p = 0.003). However, virus titer, lung weight and cytokine/chemokine responses were not different between the groups. Histopathological examination, a hydrostatic lung test and blood gas analysis showed positive results in the combination therapy group.

Conclusions/Significance

Combination therapy of laninamivir octanoate with artificial surfactant reduces lethality in mice infected with influenza virus, and eventually suppresses DAD formation and preserves lung function. This combination could be effective for prevention of severe pneumonia secondary to influenza virus infection in humans, which is not improved by NAI monotherapy.  相似文献   

8.
Infection with influenza virus induces severe pulmonary immune pathology that leads to substantial human mortality. Although antiviral therapy is effective in preventing infection, no current therapy can prevent or treat influenza-induced lung injury. Previously, we reported that influenza-induced pulmonary immune pathology is mediated by inflammatory monocytes trafficking to virus-infected lungs via CCR2 and that influenza-induced morbidity and mortality are reduced in CCR2-deficient mice. In this study, we evaluated the effect of pharmacologically blocking CCR2 with a small molecule inhibitor (PF-04178903) on the entry of monocytes into lungs and subsequent morbidity and mortality in influenza-infected mice. Subcutaneous injection of mice with PF-04178903 was initiated 1 d prior to infection with influenza strain H1N1A/Puerto Rico/8/34. Compared with vehicle controls, PF-04178903-treated mice demonstrated a marked reduction in mortality (75 versus 0%) and had significant reductions in weight loss and hypothermia during subsequent influenza infection. Drug-treated mice also displayed significant reductions in bronchoalveolar lavage fluid total protein, albumin, and lactose dehydrogenase activity. Administration of PF-04178903 did not alter viral titers, severity of secondary bacteria infections (Streptococcus pneumoniae), or levels of anti-influenza-neutralizing Abs. Drug-treated mice displayed an increase in influenza nucleoprotein-specific cytotoxic T cell activity. Our results suggest that CCR2 antagonists may represent an effective prophylaxis against influenza-induced pulmonary immune pathology.  相似文献   

9.
Background  Highly pathogenic avian influenza virus (HPAIV) infection has a high mortality rate in humans. Secondary bacterial pneumonia with HPAIV infection has not been reported in human patients, whereas seasonal influenza viruses sometimes enhance bacterial pneumonia, resulting in substantial morbidity and mortality. Therefore, if HPAIV infection were accompanied by bacterial infection, an increase in mortality would be expected. We examined whether a vaccine against HPAIV prevents severe morbidity caused by mixed infection with HPAIV and bacteria.
Methods  H7N7 subtype of HPAIV and Streptococcus pneumoniae were inoculated into cynomolgus macaques with or without vaccination of inactivated whole virus particles .
Results  Vaccination against H7N7 HPAIV decreased morbidity caused by HPAIV and pneumonia caused by S. pneumoniae . Bacterial replication in lungs was decreased by vaccination against HPAIV, although the reduction in bacterial colonies was not significant.
Conclusions  Vaccination against HPAIV reduces pneumonia caused by bacterial superinfection and may improve prognosis of HPAIV-infected patients.  相似文献   

10.
Sun K  Metzger DW 《Nature medicine》2008,14(5):558-564
Secondary bacterial infection often occurs after pulmonary virus infection and is a common cause of severe disease in humans, yet the mechanisms responsible for this viral-bacterial synergy in the lung are only poorly understood. We now report that pulmonary interferon-gamma (IFN-gamma) produced during T cell responses to influenza infection in mice inhibits initial bacterial clearance from the lung by alveolar macrophages. This suppression of phagocytosis correlates with lung IFN-gamma abundance, but not viral burden, and leads to enhanced susceptibility to secondary pneumococcal infection, which can be prevented by IFN-gamma neutralization after influenza infection. Direct inoculation of IFN-gamma can mimic influenza infection and downregulate the expression of the class A scavenger receptor MARCO on alveolar macrophages. Thus, IFN-gamma, although probably facilitating induction of specific anti-influenza adaptive immunity, suppresses innate protection against extracellular bacterial pathogens in the lung.  相似文献   

11.
Chlamydia pneumoniae is the causative agent of respiratory tract infections and a number of chronic diseases. Here we investigated the involvement of the common TLR adaptor molecule MyD88 in host responses to C. pneumoniae-induced pneumonia in mice. MyD88-deficient mice were severely impaired in their ability to mount an acute early inflammatory response toward C. pneumoniae. Although the bacterial burden in the lungs was comparable 5 days after infection, MyD88-deficient mice exhibited only minor signs of pneumonia and reduced expression of inflammatory mediators. MyD88-deficient mice were unable to up-regulate proinflammatory cytokines and chemokines, demonstrated delayed recruitment of CD8+ and CD4+ T cells to the lungs, and were unable to clear the pathogen from their lungs at day 14. At day 14 the MyD88-deficent mice developed a severe, chronic lung inflammation with elevated IL-1beta and IFN-gamma leading to increased mortality, whereas wild-type mice as well as TLR2- or TLR4-deficient mice recovered from acute pneumonia and did not show delayed bacterial clearance. Thus, MyD88 is essential to recognize C. pneumoniae infection and initiate a prompt and effective immune host response against this organism leading to clearance of bacteria from infected lungs.  相似文献   

12.
Secondary bacterial pneumonia frequently claimed the lives of victims during the devastating 1918 influenza A virus pandemic. Little is known about the viral factors contributing to the lethality of the 1918 pandemic. Here we show that expression of the viral accessory protein PB1-F2 enhances inflammation during primary viral infection of mice and increases both the frequency and severity of secondary bacterial pneumonia. The priming effect of PB1-F2 on bacterial pneumonia could be recapitulated in mice by intranasal delivery of a synthetic peptide derived from the C-terminal portion of the PB1-F2. Relative to its isogenic parent, an influenza virus engineered to express a PB1-F2 with coding changes matching the 1918 pandemic strain was more virulent in mice, induced more pulmonary immunopathology, and led to more severe secondary bacterial pneumonia. These findings help explain both the unparalleled virulence of the 1918 strain and the high incidence of fatal pneumonia during the pandemic.  相似文献   

13.
Gram-positive sepsis is a major disease problem. However, the contribution of various immune cell types to pathogenesis remains unclear. By infecting scid and wild type BALB/c mice with Streptococcus pneumoniae we have found a situation in which natural killer (NK) cells can play a detrimental role in the response to infection. scid mice were found to be significantly more susceptible to local and systemic pneumococcal infection than controls; they had significantly higher bacterial loads, elevated inflammatory responses and more widespread lung pathology. Interestingly, depletion of NK cells in scid mice resulted in significantly lower bacteraemia and inflammatory cytokine production. Infection with pneumococci deficient in pneumolysin revealed the toxin was involved in cytokine production. Overall results indicate that elevated NK cell activity during pneumococcal pneumonia amplifies pulmonary and systemic inflammation, increases bacteraemia and results in poor outcome.  相似文献   

14.
In the US and globally, dramatic increases in the prevalence of adult and childhood obesity have been reported during the last 30 years. In addition to cardiovascular disease, type II diabetes, and liver disease, obesity has recently been recognized as an important risk factor for influenza pneumonia. During the influenza pandemic of 2009, obese individuals experienced a greater severity of illness from the H1N1 virus. In addition, obese mice have also been shown to exhibit increased lethality and aberrant pulmonary inflammatory responses following influenza infection. In contrast to influenza, the impact of obesity on bacterial pneumonia in human patients is controversial. In this report, we compared the responses of lean WT and obese CPEfat/fat mice following an intratracheal infection with Streptococcus pneumoniae, the leading cause of community-acquired pneumonia. At 16 weeks of age, CPEfat/fat mice develop severe obesity, hyperglycemia, elevated serum triglycerides and leptin, and increased blood neutrophil counts. There were no differences between lean WT and obese CPEfat/fat mice in survival or lung and spleen bacterial burdens following intratracheal infection with S. pneumoniae. Besides a modest increase in TNF-α levels and increased peripheral blood neutrophil counts in CPEfat/fat mice, there were not differences in lung or serum cytokines after infection. These results suggest that obesity, accompanied by hyperglycemia and modestly elevated triglycerides, at least in the case of CPEfat/fat mice, does not impair innate immunity against pneumococcal pneumonia.  相似文献   

15.
Periodontopathic anaerobes such as Porphyromonas gingivalis are frequently found in aspiration pneumonia and lung abscesses. However, defense mechanisms and responses to these bacterial infections in the lung in vivo remain poorly understood. The coexistence of P. gingivalis with Treponema denticola has been found at higher levels and proportions in periodontally diseased sites. We hypothesized that mixed infections with P. gingivalis and T. denticola can cause severe respiratory disease. In the present study, inflammatory responses to mono- and mixed inoculations with P. gingivalis and T. denticola in the bronchoalveolar lavage (BAL) fluid were investigated. Acute pneumonia and lung abscesses in mice with the mixed infection resulted in a 40% mortality rate within 72 h, compared with only 10% mortality for the respective monoinfections. Pulmonary clearance of P. gingivalis was delayed in the mice with mixed infections with P. gingivalis and T. denticola. Tumor necrosis factor alpha (TNFalpha) interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) levels from BAL fluid of mice with mixed infections at 24 h after inoculation were significantly higher than those after P. gingivalis monoinfection (TNFalpha: P < 0.05, Il-1beta: P < 0.001, IL-6: P < 0.05). The chemokine KC level from BAL fluid of mice at 48 h (P < 0.05) and 72 h after mixed infection was also significantly increased when compared with that after P. gingivalis monoinfection (P < 0.001). The present study demonstrates that a mixed infection of P. gingivalis with T. denticola in mouse causes a marked bronchopneumonia and lung abscess in the mouse model.  相似文献   

16.
In the present study, the course of acute pneumonia in normal BALB/c mice infected by intranasal inoculation of planktonic and preformed biofilm cells (3 days old) of Klebsiella pneumoniae B5055 was studied and compared. With both cell forms the peak of infection was observed on the third post infection day, as assessed on the basis of lung bacterial load and corresponding pathology. There was an intense neutrophil infiltration in bronchoalveolar lavage fluid. Tissue damage was assessed on the basis of increased amounts of nitrite, malondialdehyde and lactate dehydrogenase in lung homogenates. The phagocytic potential of alveolar macrophages was lower in biofilm cell-induced infection than in that induced by planktonic cells. Biofilm cell induced infection generated significantly greater production of tumor necrosis factor-α and interleukin-1β on the third and fifth days of infection, respectively. Production of interleukin-10 was, however, variable. There was no significant difference in the ability of planktonic and biofilm cell forms of K. pneumoniae to induce acute pneumonia in mice in terms of bacterial counts and histopathological changes. However, biofilm cell-induced infection showed delayed clearance as compared to infection induced with the planktonic form.  相似文献   

17.
Although cells of the innate inflammatory response, such as macrophages and neutrophils, have been extensively studied in the arena of Gram-negative bacterial pneumonia, a role for T cells remains unknown. To study the role of specific T cell populations in bacterial pneumonia, mice deleted of their TCR beta- and/or delta-chain were intratracheally inoculated with Klebsiella pneumoniae. Gamma delta T cell knockout mice displayed increased mortality at both early and late time points. In contrast, mice specifically lacking only alpha beta-T cells were no more susceptible than wild-type mice. Pulmonary bacterial clearance in gamma delta-T cell knockout mice was unimpaired. Interestingly, these mice displayed increased peripheral blood dissemination. Rapid up-regulation of IFN-gamma and TNF-alpha gene expression, critical during bacterial infections, was markedly impaired in lung and liver tissue from gamma delta-T cell-deficient mice 24 h postinfection. The increased peripheral blood bacterial dissemination correlated with impaired hepatic bacterial clearance following pulmonary infection and increased hepatic injury as measured by plasma aspartate aminotransferase activity. Combined, these data suggest that mice lacking gamma delta-T cells have an impaired ability to resolve disseminated bacterial infections subsequent to the initial pulmonary infection. These data indicate that gamma delta-T cells comprise a critical component of the acute inflammatory response toward extracellular Gram-negative bacterial infections and are vital for the early production of the proinflammatory cytokines IFN-gamma and TNF-alpha.  相似文献   

18.
The growth factor GM-CSF has an important role in pulmonary surfactant metabolism and the regulation of antibacterial activities of lung sentinel cells. However, the potential of intra-alveolar GM-CSF to augment lung protective immunity against inhaled bacterial pathogens has not been defined in preclinical infection models. We hypothesized that transient overexpression of GM-CSF in the lungs of mice by adenoviral gene transfer (Ad-GM-CSF) would protect mice from subsequent lethal pneumococcal pneumonia. Our data show that intra-alveolar delivery of Ad-GM-CSF led to sustained increased pSTAT5 expression and PU.1 protein expression in alveolar macrophages during a 28-d observation period. Pulmonary Ad-GM-CSF delivery 2-4 wk prior to infection of mice with Streptococcus pneumoniae significantly reduced mortality rates relative to control vector-treated mice. This increased survival was accompanied by increased inducible NO synthase expression, antibacterial activity, and a significant reduction in caspase-3-dependent apoptosis and secondary necrosis of lung sentinel cells. Importantly, therapeutic treatment of mice with rGM-CSF improved lung protective immunity and accelerated bacterial clearance after pneumococcal challenge. We conclude that prophylactic delivery of GM-CSF triggers long-lasting immunostimulatory effects in the lung in vivo and rescues mice from lethal pneumococcal pneumonia by improving antibacterial immunity. These data support use of novel antibiotic-independent immunostimulatory therapies to protect patients against bacterial pneumonias.  相似文献   

19.
20.
We investigated the effect of anti-macrophage inflammatory protein 2 immunoglobulin G (aMIP-2 IgG) on the progression of influenza virus-induced pneumonia in mice. When mice were infected with a mouse lung-adapted strain of influenza A/PR/8/34 virus by intranasal inoculation, neutrophil counts in the bronchoalveolar lavage fluid (BALF) increased in parallel with the kinetics of MIP-2 production, which peaked 2 days after infection. After intracutaneous injection of a dose of 10 or 100 microg of aMIP-2 IgG once a day on days 0 and 1, neutrophil counts in BALF on day 2 were reduced to 49 or 37%, respectively, of the value in the control infected mice administered anti-protein A IgG. The antibody administration also improved lung pathology without affecting virus replication. Furthermore, by prolonged administration with a higher or lower dose for up to 5 days, body weight loss became slower and finally 40% of mice in both treatment groups survived potentially lethal pneumonia. These findings suggest that MIP-2-mediated neutrophil infiltration during the early phase of infection might play an important role in lung pathology. Thus, MIP-2 was considered to be a novel target for intervention therapy in potentially lethal influenza virus pneumonia in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号