首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water relations and photosynthetic characteristics of plants of Lycium nodosum grown under increasing water deficit (WD), saline spray (SS) or saline irrigation (SI) were studied. Plants of this perennial, deciduous shrub growing in the coastal thorn scrubs of Venezuela show succulent leaves which persist for approx. 1 month after the beginning of the dry season; leaf succulence is higher in populations closer to the sea. These observations suggested that L. nodosum is tolerant both to WD and salinity. In the glasshouse, WD caused a marked decrease in the xylem water potential (psi), leaf osmotic potential (psi(s)) and relative water content (RWC) after 21 d; additionally, photosynthetic rate (A), carboxylation efficiency (CE) and stomatal conductance (gs) decreased by more than 90 %. In contrast, in plants treated for 21 d with a foliar spray with 35 per thousand NaCl or irrigation with a 10 % NaCl solution, psi and RWC remained nearly constant, while psi(s) decreased by 30 %, and A, CE and gs decreased by more than 80 %. An osmotic adjustment of 0.60 (SS) and 0.94 MPa (SI) was measured. Relative stomatal and mesophyll limitations to A increased with both WD and SS, but were not determined for SI-treated plants. No evidence of chronic photoinhibition due to any treatment was observed, since maximum quantum yield of PSII, Fv/Fm, did not change with either drought in the field or water or salinity stress in the glasshouse. Nevertheless, WD and SI treatments caused a decrease in the photochemical (qP) and an increase in the non-photochemical (qN) quenching coefficients relative to controls; qN was unaffected by the SS treatment. The occurrence of co-limitation of A by stomatal and non-stomatal factors in plants of L. nodosum may be associated with the extended leaf duration under water or saline stress. Additionally, osmotic adjustment may partly explain the relative maintenance of A and gs in the SS and SI treatments and the tolerance to salinity of plants of this species in coastal habitats.  相似文献   

2.
Night-time stomatal opening in C3 plants may result in significant water loss when no carbon gain is possible. The objective of this study was to determine if endogenous patterns of night-time stomatal opening, as reflected in leaf conductance, in Vicia faba are affected by photosynthetic conditions the previous day. Reducing photosynthesis with low light or low CO2 resulted in reduced night-time stomatal opening the following night, irrespective of the effects on daytime stomatal conductance. Likewise, increasing photosynthesis with enriched CO2 levels resulted in increased night-time stomatal opening the following night. Reduced night-time stomatal opening was not the result of an inability to regulate stomatal aperture as leaves with reduced night-time stomatal opening were capable of greater night-time opening when exposed to low CO2. After acclimating plants to long or short days, it was found that night-time leaf conductance was greater in plants acclimated to short days, and associated with greater leaf starch and nitrate accumulation, both of which may affect night-time guard cell osmotic potential. Direct measurement of guard cell contents during endogenous night-time stomatal opening will help identify the mechanism of the effect of daytime photosynthesis on subsequent night-time stomatal regulation.  相似文献   

3.
The influence of the arbuscular mycorrhizal fungus Glomus deserticola on the water relations, gas exchange parameters, and vegetative growth of Rosmarinus officinalis plants under water stress was studied. Plants were grown with and without the mycorrhizal fungus under glasshouse conditions and subjected to water stress by withholding irrigation water for 14 days. Along the experimental period, a significant effect of the fungus on the plant growth was observed, and under water stress, mycorrhizal plants showed an increase in aerial and root biomass compared to non-mycorrhizal plants. The decrease in the soil water potential generated a decrease in leaf water potential (psi(l)) and stem water potential (psi(x)) of mycorrhizal and non-mycorrhizal plants, with this decrease being lower in mycorrhizal water-stressed plants. Mycorrhization also had positive effects on the root hydraulic conductivity (Lp) of water stressed plants. Furthermore, mycorrhizal-stressed plants showed a more important decrease in osmotic potential at full turgor (psi(os)) than did non-mycorrhizal-stressed plants, indicating the capacity of osmotic adjustment. Mycorrhizal infection also improved photosynthetic activity (Pn) and stomatal conductance (g(s)) in plants under water stress compared to the non-mycorrhizal-stressed plants. A similar behaviour was observed in the photochemical efficiency of PSII (Fv/Fm) with this parameter being lower in non-mycorrhizal plants than in mycorrhizal plants under water stress conditions. In the same way, under water restriction, mycorrhizal plants showed higher values of chlorophyll content than did non-mycorrhizal plants. Thus, the results obtained indicated that the mycorrhizal symbiosis had a beneficial effect on the water status and growth of Rosmarinus officinalis plants under water-stress conditions.  相似文献   

4.
Pepper (Capsicum annuum L.) plants were grown aeroponically in a Singapore greenhouse under natural diurnally fluctuating ambient shoot temperatures, but at two different root-zone temperatures (RZTs): a constant 20 +/- 2 degrees C RZT and a diurnally fluctuating ambient (A) (25-40 degrees C) RZT. Plants grown at 20-RZT had more leaves, greater leaf area and dry weight than A-RZT plants. Reciprocal transfer experiments were conducted between RZTs to investigate the effect on plant growth, stomatal conductance (gs) and water relations. Transfer of plants from A-RZT to 20-RZT increased plant dry weight, leaf area, number of leaves, shoot water potential (psi shoot), and gs; while transfer of plants from 20-RZT to A-RZT decreased these parameters. Root hydraulic conductivity was measured in the latter transfer and decreased by 80% after 23 d at A-RZT. Transfer of plants from 20-RZT to A-RZT had no effect on xylem ABA concentration or xylem nitrate concentration, but reduced xylem sap pH by 0.2 units. At both RZTs, gs measured in the youngest fully expanded leaves increased with plant development. In plants with the same number of leaves, A-RZT plants had a higher gs than 20-RZT plants, but only under high atmospheric vapour pressure deficit. The roles of chemical signals and hydraulic factors in controlling gs of aeroponically grown Capsicum plants at different RZTs are discussed.  相似文献   

5.
Two tropical tree species, Acacia confusa and Leucaena leucocephala, were used to study the relationships among stomatal conductance, xylem ABA concentration and leaf water potential during a soil drying and rewatering cycle. Stomatal conductance of both A. confusa and L. leucocephala steadily decreased with the decreases in soil water content and pre-dawn leaf water potential. Upon rewatering, soil water content and pre-dawn leaf water potential rapidly returned to the control levels, whereas the reopening of stomata showed an obvious lag time. The length of this lag time was highly dependent not only upon the degree of water stress but also on plant species. The more severe the water stress, the longer the lag time. When A. confusa and L. leucocephala plants were exposed to the same degree of water stress (around –2.0 MPa in pre-dawn leaf water potential), the stomata of A. confusa reopened to the control level 6 days after rewatering. However, it took L. leucocephala about 14 days to reopen fully. A very similar response of leaf photosynthesis to soil water deficit was also observed for both species. Soil drying resulted in a significant increase in leaf and xylem ABA concentrations in both species. The more severe the water stress, the higher the leaf and xylem ABA concentrations. Both leaf ABA and xylem ABA returned to the control level following relief from water deficit and preceded the full recovery of stomata, suggesting that the lag phase of stomatal reopening was not controlled by leaf and/or xylem ABA. In contrast to drying the whole root system, drying half of the root system did not change the leaf water relations, but caused a significant increase in xylem ABA concentration, which could fully explain the decrease of stomatal conductance. After rewatering, the stomatal conductance of plants in which half of the roots were dried recovered more rapidly than those of whole-root dried plants, indicating that the leaf water deficit that occurred during the drying period was related to the post-stress stomatal inhibition. These results indicated that the decrease in stomatal conductance caused by water deficit was closely related to the increase in xylem ABA, but xylem ABA could not fully explain the reopening of stomata after relief of water stress, neither did the leaf ABA. Some unknown physiological and/or morphological processes in the guard cells may be related to the recovery process.  相似文献   

6.
Isohydric and anisohydric regulations of plant water status have been observed over several decades of field, glasshouse and laboratory studies, yet the functional significance and mechanism of both remain obscure. We studied the seasonal trends in plant water status and hydraulic properties in a natural stand of Eucalyptus gomphocephala through cycles of varying environmental moisture (rainfall, groundwater depth, evaporative demand) in order to test for isohydry and to provide physiological information for the mechanistic interpretation of seasonal trends in plant water status. Over a 16 month period of monitoring, spanning two summers, midday leaf water potential (psi(leaf)) correlated with predawn psi(leaf), which was correlated with water table depth below ground level, which in turn was correlated with total monthly rainfall. Eucalyptus gomphocephala was therefore not seasonally isohydric. Despite strong stomatal down-regulation of transpiration rate in response to increasing evaporative demand, this was insufficient to prevent midday psi(leaf) from falling to levels below -2 MPa in the driest month, well into the region likely to induce xylem air embolisms, based on xylem vulnerability curves obtained in the study. However, even though midday psi(leaf) varied by over 1.2 MPa across seasons, the hydrodynamic (transpiration-induced) water potential gradient from roots to shoots (delta psi(plant)), measured as the difference between predawn and midday psi(leaf), was relatively constant across seasons, averaging 0.67 MPa. This unusual pattern of hydraulic regulation, referred to here as isohydrodynamic, is explained by a hydromechanical stomatal control model where plant hydraulic conductance is dependent on transpiration rate.  相似文献   

7.
Four to 10 h of soil flooding delayed and suppressed the normal daily increase in root hydraulic conductance (Lp) in tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) plants. The resulting short-term loss of synchrony between Lp and stomatal conductance decreased leaf water potential ([psi]L) relative to well-drained plants within 2 h. A decrease in [psi]L persisted for 8 h and was mirrored by decreased leaf thickness measured using linear displacement transducers. After 10 h of flooding, further closing of stomata and re-convergence of Lp in flooded and well-drained roots returned [psi]L to control values. In the second photoperiod, Lp in flooded plants exceeded that in well-drained plants in association with much increased Lp and decreased stomatal conductance. Pneumatic balancing pressure applied to roots of intact flooded plants to prevent temporary loss of [psi]L in the 1st d did not modify the patterns of stomatal closure or leaf expansion. Thus, the magnitude of the early negative hydraulic message was neither sufficient nor necessary to promote stomatal closure and inhibit leaf growth in flooded tomato plants. Chemical messages are presumed to be responsible for these early responses to soil flooding.  相似文献   

8.
Stomatal development and patterning in Arabidopsis leaves   总被引:1,自引:0,他引:1  
The functional unit for gas exchange between plants and the atmosphere is the stomatal complex, an epidermal structure composed of two guard cells, which delimit a stomatal pore, and their subsidiary cells. In the present work, we define the basic structural unit formed in Arabidopsis thaliana during leaf development, the anisocytic stomatal complex. We perform a cell lineage analysis by transposon excision founding that at least a small percentage of stomatal complexes are unequivocally non-clonal. We also describe the three-dimensional pattern of stomata in the Arabidopsis leaf. In the epidermal plane, subsidiary cells of most stomatal complexes contact the subsidiary cells of immediately adjacent complexes. This minimal distance between stomatal complexes allows each stoma to be circled by a full complement of subsidiary cells, with which guard cells can exchange water and ions in order to open or to close the pore. In the radial plane, stomata (and their precursors, the meristemoids) are located at the junctions of several mesophyll cells. This meristemoid patterning may be a consequence of signals that operate along the radial axis of the leaf, which establish meristemoid differentiation precisely at these places. Since stomatal development is basipetal, these radially propagated signals may be transmitted in the axial direction, thus guiding stomatal development through the basal end of the leaf.  相似文献   

9.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

10.
PH as a stress signal   总被引:33,自引:0,他引:33  
The pH of the xylem sap of plants experiencing a range of environmental conditions can increase by over a whole pH unit. This results in an increased ABA concentration in the apoplast adjacent to the stomatal guard cells in the leaf epidermis, by reducing the ability of the mesophyll and epidermal symplast to sequester ABA away from this compartment. As a result the guard cell ABA receptors become activated and the stomata close, enabling the plant to retain water. Were it not for the low concentration of ABA ubiquitous to all land plants, the increase in the pH of the apoplast adjacent to the guard cell would induce stomatal widening, and cause excessive water loss. Not only does ABA prevent this potentially harmful phenomenon, but it also converts the pH increase to a signal which can bring about plant protection.  相似文献   

11.
Stomata are natural openings in the plant epidermis responsible for gas exchange between plant interior and environment. They are formed by a pair of guard cells, which are able to close the stomatal pore in response to a number of external factors including light intensity, carbon dioxide concentration, and relative humidity (RH). The stomatal pore is also the main route for pathogen entry into leaves, a crucial step for disease development. Recent studies have unveiled that closure of the pore is effective in minimizing bacterial disease development in Arabidopsis plants; an integral part of plant innate immunity. Previously, we have used epidermal peels to assess stomatal response to live bacteria (Melotto et al. 2006); however maintaining favorable environmental conditions for both plant epidermal peels and bacterial cells has been challenging. Leaf epidermis can be kept alive and healthy with MES buffer (10 mM KCl, 25 mM MES-KOH, pH 6.15) for electrophysiological experiments of guard cells. However, this buffer is not appropriate for obtaining bacterial suspension. On the other hand, bacterial cells can be kept alive in water which is not proper to maintain epidermal peels for long period of times. When an epidermal peel floats on water, the cells in the peel that are exposed to air dry within 4 hours limiting the timing to conduct the experiment. An ideal method for assessing the effect of a particular stimulus on guard cells should present minimal interference to stomatal physiology and to the natural environment of the plant as much as possible. We, therefore, developed a new method to assess stomatal response to live bacteria in which leaf wounding and manipulation is greatly minimized aiming to provide an easily reproducible and reliable stomatal assay. The protocol is based on staining of intact leaf with propidium iodide (PI), incubation of staining leaf with bacterial suspension, and observation of leaves under laser scanning confocal microscope. Finally, this method allows for the observation of the same live leaf sample over extended periods of time using conditions that closely mimic the natural conditions under which plants are attacked by pathogens.  相似文献   

12.
Seasonal Changes in the Cytokinin Content of Ginkgo biloba Leaves   总被引:1,自引:0,他引:1  
Young growth-chamber-grown cotton plants were subjected to a series of eight periods of soil water stress, which served as a preconditioning treatment. After preconditioning, water was withheld and changes in the stomatal resistance and leaf water potential were determined and compared with similar well watered control plants. The stomatal response of stress preconditioned plants adjusted such that the diffusion resistance of the lower surface of the leaf did not reach a value greater than 20 s cm?1 until the leaf water potential dropped 14 bars below that required to reach the same resistance on previously unstressed plants. The resistance—leaf water potential relation for the adaxial surface was unaltered by the preconditioning treatment. Adjustment of the osmotic potential of the guard cells on the abaxial surface provides at least a partial explanation of this change in response. The lack of adjustment of stomatal response on the adaxial surface of the leaves was correlated with a lack of adjustment in osmotic potential of guard cells on that surface.  相似文献   

13.
Three ecotypes of reed (Phragmites communis Trinius), swamp reed (SR), dune reed (DR), and heavy salt meadow reed (HSMR), growing in desert regions of northwest China were simultaneously investigated in their natural state for gas exchange patterns and the expression of three photosynthesis-related genes, cab (the gene for the light-harvesting chlorophyll a/b binding protein, LHC), psbA (the gene for the reaction centre D1 protein of photosystem 2, PS2), and 16S rDNA (the gene for plastid 16S rRNA). Stomatal conductance (gs) and intercellular CO2 concentration (ci) were markedly lower in the two terrestrial ecotypes (DR and HSMR) as compared to SR, paralleling a similar observed depression in net photosynthetic rate (PN). However, DR with the lowest measured gs and ci still exhibited a higher PN compared to HSMR. These results suggest that both stomatal and non-stomatal factors account for the comparatively low carbon assimilation in the terrestrial ecotypes. An increase in the expression of photosynthesis-related genes was observed in DR compared to SR, whereas the reverse situation was true in HSMR. The expression of photosynthesis-related genes may contribute to reed plants' photosynthetic capacity per leaf area under natural water deficits, but the levels of photosynthesis-related gene expression are not directly correlated with reed plants' general ability for survival and adaptation under water deficient conditions.  相似文献   

14.
对生长在荫棚3种不同光照条件下和全自然光下的热带雨林4个冠层种(望天树、绒毛番龙眼、团花、红厚壳)和3个中层种(玉蕊、藤黄、滇南风吹楠)树苗叶片气孔特征以及它们的可塑性进行了研究、结果表明,这些植物的气孔全部着生在远轴面.7种植物中,玉蕊和绒毛番龙眼的气孔密度较大,滇南红厚壳和团花的保卫细胞最长.随光强的增大,气孔密度和气孔指数增大,单位叶气孔数在低光强下较大.除团花外,其它植物叶片气孔导度在50%光强处最大,而光强对保卫细胞的长度影响不显著.相关分析表明,气孔密度与植物单位叶的面积呈负相关。而与气孔导度的相关性不显著、尽管两种不同生活型植物气孔指数和单位叶气孔数在不同光强下的可塑性差异较小,但冠层树种气孔密度和气孔导度的可塑性显著高于中层树种.  相似文献   

15.
Stomatal sensitivity to water stress was investigated in pearlmillet [Pennisetum americanum (L.) Leeke] in relation to stageof plant development, leaf water status and ABA content by samplingplants at midday. For the same leaf water potential (), droughtedplants with emerged panicles were found to have a greater leafconductance (gL), indicative of greater stomatal opening, thanplants sampled prior to panicle emergence. The difference betweensuch flowering (F) and non-flowering (NF) plants in at stomatalclosure was estimated to be at least 0.6 MPa. This differencewas considered unlikely to be the result of differential bulkleaf osmotic adjustment, and for most samples from both F andNF plants, bulk leaf turgor potential (p) was estimated to bezero. Stomatal closure in NF plants was associated in two genotypes(BJ 104 and line 112) with higher leaf ABA levels. Differencesin ABA levels between F and NF plants were, however, smalleror absent in genotypes Serere 39 and B282. These genotypes wereat lower than BJ 104 and line 112 when sampled and showed smallerdifferences between F and NF plants in conductance. Lower ABA levels in F plants are ascribed either to effectsof leaf ageing or to effects of flowering on ABA content ofthe leaf. Significant differences in gL in the absence of differencesin ABA content are taken to imply changes in stomatal sensitivityto the hormone or in its access to the stomatal complex. Pennisetum americanum (L.) Leeke, pearl millet, flowering, stomata, water stress, abscisic acid  相似文献   

16.
Studies of the water relations of potassium deficient sugarbeet plants (Beta vulgaris L.) revealed two factors for stomatal closure. One component of stomatal closure was reversible by floating leaf discs on distilled water to relieve the water deficit in the leaves; the other component was reversible in the light by floating the leaf discs on KCl solution for 1 hour or more. Potassium-activated stomatal opening in the light was observed when the guard cells were surrounded by their normal environment of epidermal and mesophyll cells, just as observed by previous workers for epidermal strips. Leaf water potentials, like stomatal apertures, appear to be strongly related to leaf potassium concentration. Potassium-deficient plants have a greatly decreased root permeability to water, and the implications of this effect on stomatal aperture and leaf water potential are discussed. In contrast, petiole permeability to water is unaffected by potassium treatment.  相似文献   

17.
Potassium Loss from Stomatal Guard Cells at Low Water Potentials   总被引:2,自引:1,他引:1  
The potassium content of guard cells and the resistance to viscousflow of air through the leaf were determined in sunflower (Helianthusannuus) subjected to low leaf water potentials under illuminatedconditions. In intact plants desiccated slowly by withholdingwater from the soil, large losses in guard cell K occurred asleaf water potentials decreased. Leaf viscous resistance increased,indicating stomatal closure. Similar results were obtained whendetached leaf segments were desiccated rapidly. Upon rehydrationof leaves, no stomatal opening was observed initially, despiteleaf water potentials at predesiccated levels. After severalhours, however, re-entry of K occurred and stomata became fullyopen. Turgid leaf segments floated on an ABA solution showedlosses of guard cell K and closure of stomata as rapidly andcompletely as those brought about by desiccation. It is concludedthat stomatal closure at low water potentials under illuminatedconditions is not controlled solely by water loss from the tissuebut involves the loss of osmoticum from the guard cells as well.This in turn decreases the turgor difference between the guardcells and the surrounding cells, and closing occurs.  相似文献   

18.
McAdam SA  Brodribb TJ 《The Plant cell》2012,24(4):1510-1521
Stomatal guard cells regulate plant photosynthesis and transpiration. Central to the control of seed plant stomatal movement is the phytohormone abscisic acid (ABA); however, differences in the sensitivity of guard cells to this ubiquitous chemical have been reported across land plant lineages. Using a phylogenetic approach to investigate guard cell control, we examined the diversity of stomatal responses to endogenous ABA and leaf water potential during water stress. We show that although all species respond similarly to leaf water deficit in terms of enhanced levels of ABA and closed stomata, the function of fern and lycophyte stomata diverged strongly from seed plant species upon rehydration. When instantaneously rehydrated from a water-stressed state, fern and lycophyte stomata rapidly reopened to predrought levels despite the high levels of endogenous ABA in the leaf. In seed plants under the same conditions, high levels of ABA in the leaf prevented rapid reopening of stomata. We conclude that endogenous ABA synthesized by ferns and lycophytes plays little role in the regulation of transpiration, with stomata passively responsive to leaf water potential. These results support a gradualistic model of stomatal control evolution, offering opportunities for molecular and guard cell biochemical studies to gain further insights into stomatal control.  相似文献   

19.
An empirical model for stomatal conductance (g), proposed by Leuning (1995, this issue) as a modification of Ball, Woodrow & Berry's (1987) model, is interpreted in terms of a simple, steady-state model of guard cell function. In this model, stomatal aperture is a function of the relative turgor between guard cells and epidermal cells. The correlation between g and leaf surface vapour pressure deficit in Leuning's model is interpreted in terms of stomatal sensing of the transpiration rate, via changes in the gradient of total water potential between guard cells and epidermal cells. The correlation between g, CO2 assimilation rate and leaf surface CO2 concentration in Leuning's model is interpreted as a relationship between the corresponding osmotic gradient, irradiance, temperature, intercellular CO2 concentration and stomatal aperture itself. The explicit relationship between osmotic gradient and stomatal aperture (possibly describing the effect of changes in guard cell volume on the membrane permeability for ion transport) results in a decrease in the transpiration rate in sufficiently dry air. Possible extension of the guard cell model to include stomatal responses to soil water status is discussed.  相似文献   

20.
A new mechanism for stomatal responses to humidity and temperature is proposed. Unlike previously-proposed mechanisms, which rely on liquid water transport to create water potential gradients within the leaf, the new mechanism assumes that water transport to the guard cells is primarily through the vapour phase. Under steady-state conditions, guard cells are assumed to be in near-equilibrium with the water vapour in the air near the bottom of the stomatal pore. As the water potential of this air varies with changing air humidity and leaf temperature, the resultant changes in guard cell water potential produce stomatal movements. A simple, closed-form, mathematical model based on this idea is derived. The new model is parameterized for a previously published set of data and is shown to fit the data as well as or better than existing models. The model contains mathematical elements that are consistent with previously-proposed mechanistic models based on liquid flow as well as empirical models based on relative humidity. As such, it provides a mechanistic explanation for the realm of validity for each of these approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号